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Introduction 

Supply transformer is one of the most important elements of each electricity 

mains. Power transmission over long distances from the place of production to 

the place of consumption in today’s networks requires not less than 5-6 times of 

transformation in step-up and step-down transformer (Bessonov, 2006; Naidu & 

Kamaraju, 2013). As the distance from the power plant grows, transformer unit 

output decreases, while specific consumption of materials to make transformers 
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and unit output losses, as well as price for 1 kW of losses increase (Serdeshnikov 

et al., 2005; Weedy et al., 2012). Therefore, one of the most important tasks now 

is to reduce the power losses in distribution transformers with voltage class 6 

(10) kV. These transformers create most of the energy losses, paid by the 

consumer at the highest price (Hessian Ministry of Economics, Transport, Urban 

and Regional Development, 206). 

In recent years, the asymmetry of operating conditions demanded attention 

again, as evidenced by a number of scientific papers (Troitsky & Kostinsky, 

Durdykuliev, 2012; Dzhendubaev, 2009). As public electricity consumption in a 

number of energy systems has exceeded the industrial electricity consumption, 

this led to a breach of symmetry and balance of voltage and current systems. 

Therefore, the task of improving the calculation and reduction of electricity 

losses in power distribution networks with unbalanced load remains a topical 

scientific and technical power problem. 

Literature Review 

The paper offers an accurate calculation of the efficiency factor, and 

therefore, the loss of power by supply transformers (Dzhendubaev, 2009; 

Letschert et al., 2013). In contrast to the classical approach (Bessonov, 2006), 

here catalog data allows to determine the efficiency of a transformer, taking into 

account the effect of the nature and load rate concerning low voltage (Electric 

energy systems: analysis and operation, 2016; Pollock & Sullivan, 2015; 

Besselmann, Mester & Dujic, 2014). However, the paper is done without regard 

to mode’s asymmetry and additional losses caused by the added to transformer 

substitution circuit resistances of unbalanced phase load, as well as not taking 

into account the output transfer from one phase to another. 

The paper introduces the concept of reduced real-power losses, taking into 

account both the losses in a transformer and energy supply elements, with the 
help of economic equivalent of reactive power (loss change coefficient, CLC), 

which characterizes real losses from a power supply to a transformer, 

attributable to 1 kVAr of the lost reactive power (Ministry of Economics, 

Transport, Urban and Regional Development, 2006). For step-down 
transformers 6 (10)/0,4 kV is offered in power system peak hours, CLC = 0,15, 

during the hours of power systems low use – CLC = 0.1. These losses, which are 

based both on the power losses in a transformer and the created in power 

systems elements, are recommended to be calculated according to the formula 

(Franklin & Franklin, 2013): 

∆𝐸аТ = ∆𝑃x
′ ∙ 𝑇𝑌 + ∆𝑃к

′ ∙ 𝐶𝐿
2 ∙ 𝑇𝑤, 

where the given real-power losses of no-load and short circuit, respectively, are: 

∆𝑃x
′ = ∆𝑃x + 𝐶𝐿𝐶 ∙ ∆𝑄x; ∆𝑃к

′ = ∆𝑃к + 𝐶𝐿𝐶 ∙ ∆𝑄к; 

reactive power losses of no-load and short circuit - 

∆𝑄x = 𝑆т.𝑛om ∙ 𝑈к%/100, ∆𝑄к = 𝑆т.nom ∙ 𝐼x%/100; 

𝑇𝑌  – transformer working time during a year; 

𝐶𝐿 – transformer load coefficient; 

𝑇w – transformer working time under nominal load during a year; 

∆𝑃x, ∆𝑃к, 𝑈к, 𝐼x – transformer catalogue data; 

𝑆т.nom – nominal transformer power. 
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Counting real transformer no-load losses and short-circuits is expedient 

both in carrying out process loss calculations and in justifying the economic 

benefit of transformers replacement (Bonnin et al., 2013). 

The increase in losses is due to the reversal of distribution transformer 

cores, their heating, mechanical effects of vibrations, especially in short-circuit 

mode, as a result of repairs (Ebrahimi et al., 2014). 

The analysis of the sources, stated above, showed that a few experimental 

results require further investigation of unbalanced modes of supply 

transformers. Since the unbalanced load influences the parameters of 

distribution transformers, there is a need to improve the calculation of the 

additional power losses caused by the asymmetry of the load connected to it. 

Aim of the Study 

This article focuses on the definition of functional dependence for 

calculation of additional real-power losses in double-wound supply transformers 

of voltage class 6 (10) kV, due to unbalanced active inductive load in a star 

connection with an insulated neutral.  

Research questions 

What are the losses from negative-sequence currents compared to direct 

sequence currents? 

Method 

When solving the problem, authors used the theory of electric circuits, 

method of balanced components, field and comparative experiment, as well as 

modern devices for the analysis and synthesis of electric circuits.  

In order to confirm the obtained functional dependence for calculation of 

additional real-power losses in a double-wound supply transformer caused by 

unbalanced active inductive load in a star connection with an insulated neutral, 

researchers made measurements of current, voltage and real power of each 

phase of “distribution transformer – unbalanced load” module. 

Measurements were made using the following devices: 

- K-540 measuring set, serial № 1213: nominal voltages with built-in 

voltmeter 15, 30, 75, 150, 300, 450, 600 V; nominal currents with built-in 

ammeter set 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, 50 A; nominal real power with built 

in wattmeter set from 0 to 30 kW within the ranges of current and voltage 

measurements, stated above. 

- CIRCUTOR portable power quality analyzer, series AR.5, serial № 

408612036. Measuring range: current 0.05 ... 5 A, 1 A ... 200; voltage 1 ... 500 V. 

All used devices have accuracy class 0.5 and a certificate of calibration. 

As the research object, authors used a three-phase double-wound 

transformer TSZ – 2,5, with nominal power of 2.5 kW∙A, the voltage on the 

higher voltage winding of 220 V and 127 V on the low voltage winding. 

To simulate unbalanced resistance load, the researchers calculated, 

designed and assembled a load plant, having an active resistance. To simulate 

unbalanced inductive load, they calculated, designed and assembled a load 

plant, having an inductive resistance. 
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The designed plants allowed to model the operating modes for “distribution 

transformer – unbalanced load” module:  

 active balanced load; 

 active unbalanced load; 

 active inductive balanced load; 

 active inductive unbalanced load. 

These settings also allowed to explore the operating modes of a transformer 

when in a star connection with an insulated neutral.  

Data, Analysis, and Results 

The “distribution transformer – unbalanced load” module is presented as of 

a system of balanced EMF sources, with jUEA  , and which can be star-

connected with an insulated neutral to an unbalanced active inductive load 

(Figure. 1), where the complex resistance phases are: 

CZBZAZ  ; AA jXRAZ  ; BB jXRBZ  ; CC jXRCZ  . 

This scheme requires determining the loss of a negative-sequence current, 

compared with losses from a positive-sequence current, as well as full, real, 

reactive power, reactive power coefficient and pulsating power. 

Because of the symmetry, electromotive forces of B and C phases, 

respectively, equal
2ajUEB  ; ajUEC  . Here

2

3

2

1
ja  ; 

2

3

2

12 ja   are turning unit vectors of 120° and 240° counterclockwise. 

 
Figure 1. The three-phase network with a balanced EMF source system and an unbalanced 

active inductive load in a star connection with an isolated neutral. 

Due to the symmetry of electromotive force source phases, we have 

�̇�𝐵 = �̇�𝐴 ∙ 𝒂
2 = 𝑗𝑈 ∙ 𝒂2,  �̇�𝐶 = �̇�𝐴 ∙ 𝒂 = 𝑗𝑈 ∙ 𝒂, 

where 𝒂 = 𝑒𝑗120
0
= −

1

2
+ 𝑗

√3

2
; 𝒂𝟐 = 𝑒𝑗240

0
= −

1

2
− 𝑗

√3

2
 are phase factors. 

Load neutral offset (�̇�𝑁𝑛) to electromotive force neutral, according to 

Kennely’s formula (Bessonov, 2006) equals: 
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      �̇�𝑁𝑛 = 𝑗𝑈

1
𝑍𝐴
+𝒂2 ∙

1
𝑍𝐵
+𝒂 ∙

1
𝑍𝐶

1
𝑍𝐴
+
1
𝑍𝐵
+
1
𝑍𝐶

= 𝑗𝑈
𝑍𝐵𝑍𝐶 + 𝒂

2 ∙ 𝑍𝐴𝑍𝐶 +𝒂 ∙ 𝑍𝐴𝑍𝐵
𝑍

,     (1) 

where 𝑍 = 𝑍𝐴𝑍𝐵 + 𝑍𝐴𝑍𝐶 + 𝑍𝐵𝑍𝐶 . 

Complex phase voltages of unbalanced load with the equation  (1): 

                             �̇�𝐴 = �̇�𝐴 − �̇�𝑁𝑛 = 𝑗√3𝑈
𝑍𝐴𝑍𝐵𝑒

−𝑗300 + 𝑍𝐴𝑍𝐶𝑒
𝑗300

𝑍
;                  (2) 

                                �̇�𝐵 = �̇�𝐵 − �̇�𝑁𝑛 = −𝑗√3𝑈
𝑗𝑍𝐴𝑍𝐵 + 𝑍𝐵𝑍𝐶𝑒

𝑗300

𝑍
;                     (3) 

                                �̇�𝐶 = �̇�𝐶 − �̇�𝑁𝑛 = 𝑗√3𝑈
𝑗𝑍𝐴𝑍𝐶 − 𝑍𝐵𝑍𝐶𝑒

−𝑗300

𝑍
.                       (4) 

Using the equations (2) – (4), we determine the complex linear currents: 

                                       𝐼�̇� =
�̇�𝐴
𝑍𝐴
= 𝑗√3𝑈

𝑍𝐵𝑒
−𝑗300 + 𝑍𝐶𝑒

𝑗300

𝑍
;                                 (5) 

                                         𝐼�̇� =
�̇�𝐵
𝑍𝐵
= −𝑗√3𝑈

𝑗𝑍𝐴 + 𝑍𝐶𝑒
𝑗300

𝑍
;                                     (6) 

                                           𝐼�̇� =
�̇�𝐶
𝑍𝐶
= 𝑗√3𝑈

𝑗𝑍𝐴 − 𝑍𝐵𝑒
−𝑗300

𝑍
.                                    (7) 

Then we apply Fortescue transformations to determine the balanced 

components of linear currents. 

The sum of the right sides of equations (5) - (7) are equal to zero, which 

corresponds to the physics of the phenomenon. Since the load neutral is isolated 

(zero conductor resistance is infinite), then the current in the neutral conductor 
is 𝐼�̇� = 0. 

Complex currents of positive and negative sequences of A phase are 

respectively: 

                          𝐼1̇𝐴 =
1

3
(𝐼�̇� +𝒂 ∙ 𝐼�̇� + 𝒂

2 ∙ 𝐼�̇�) = 𝑗𝑈
𝑍𝐴 + 𝑍𝐵 + 𝑍𝐶

𝑍
;                     (8) 

                  𝐼2̇𝐴 =
1

3
(𝐼�̇� + 𝒂

2 ∙ 𝐼�̇� + 𝒂 ∙ 𝐼�̇�) = −𝑗𝑈
𝑍𝐴 +𝒂 ∙ 𝑍𝐵 + 𝒂

2 ∙ 𝑍𝐶
𝑍

.            (9) 

By adding the right sides of equations (8) and (9) we obtain an expression 

similar to the right-hand side of equation (5), which is a credibility test for the 
transformations of positive and negative currents of A phase sequence, i.e. 

𝐼�̇� =  𝐼1̇𝐴 + 𝐼2̇𝐴. 

Balanced components of B and C phases, respectively, may be determined 

by using for this purpose the phase factors: 

𝐼1̇𝐵 = 𝐼1̇𝐴 ∙ 𝒂
2;  𝐼2̇𝐵 =  𝐼2̇𝐴 ∙ 𝒂; 

𝐼1̇𝐶 =  𝐼1̇𝐴 ∙ 𝒂;  𝐼2̇𝐶 = 𝐼2̇𝐴 ∙ 𝒂
2 . 

Formulas (1), (5 - 7) derive from the expanded matrix equations (Danko, 

2005; Almeida & Kato, 2014) of unbalanced three-phase active inductive load 

mode in a star connection with an insulated neutral:  
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(

 

1 1 1
𝑍𝐴 0 0

0
0

𝑍𝐵
0

0
𝑍𝐶

   

0
1
1
1

||

0
�̇�𝐴
�̇�𝐵
�̇�𝐶)

 . 

Asymmetry coefficient modulus currents in negative current: 

𝐾2 = |�̇�2| = |
𝐼2̇𝐴

𝐼1̇𝐴
|. 

Additional active power losses in relative phase units are equal to the 

square current asymmetry coefficient modulus of negative current (Troitsky, 

2001): 

                                         ∆𝑃∗ = |�̇�2|
2
= |
𝑍𝐴 +𝒂 ∙ 𝑍𝐵 + 𝒂

2 ∙ 𝑍𝐶
𝑍𝐴 + 𝑍𝐵 + 𝑍𝐶

|

2

.                      (10) 

Complex expression in parentheses of equation numerator (10) is  

𝑍𝐴 +𝒂 ∙ 𝑍𝐵 +𝒂
2 ∙ 𝑍𝐶 = 

 = 𝑅𝐴 −
𝑅𝐵 +𝑅𝐶
2

+
√3

2
(𝑋𝐶 − 𝑋𝐵) + 𝑗(𝑋𝐴 −

𝑋𝐵 + 𝑋𝐶
2

+
√3

2
(𝑅𝐵 −𝑅𝐶)) .   (11) 

Square modulus of the complex expression in the equation (10) 

denominator: 

|𝑍𝐴 + 𝑍𝐵 + 𝑍𝐶|
2
= 𝑍𝐴

2 + 𝑍𝐵
2 + 𝑍𝐶

2 + 2(𝑅𝐴𝑅𝐵 +𝑋𝐴𝑋𝐵) + 2(𝑅𝐴𝑅𝐶 + 𝑋𝐴𝑋𝐶) + 

                                                    +2(𝑅𝐵𝑅𝐶 +𝑋𝐵𝑋𝐶).                                                  (12) 

Square modulus of the complex expression (11): 

|𝑍𝐴 +𝒂 ∙ 𝑍𝐵 +𝒂
2 ∙ 𝑍𝐶|

2
= 𝑍𝐴

2 + 𝑍𝐵
2 + 𝑍𝐶

2 − 𝑅𝐴𝑅𝐵 −𝑅𝐴𝑅𝐶 −𝑅𝐵𝑅𝐶 −𝑋𝐴𝑋𝐵 − 

 −𝑋𝐴𝑋𝐶 − 𝑋𝐵𝑋𝐶 +√3𝑅𝐴(𝑋𝐶 −𝑋𝐵) + √3𝑅𝐵(𝑋𝐴 − 𝑋𝐶) + √3𝑅𝐶(𝑋𝐵 −𝑋𝐴).  (13) 

Insymboling the following expressions: 

α = |𝑍𝐴 + 𝒂 ∙ 𝑍𝐵 +𝒂
2 ∙ 𝑍𝐶|

2
;  β = |𝑍𝐴 + 𝑍𝐵 + 𝑍𝐶|

2
. 

Substituting the values on the right sides of equations (12) and (13), based 

on the received symbols in the formula (10), we obtain an expression of 

additional active power losses in p.u. in the case of unbalanced active inductive 

three-phase load in a star connection with an insulated neutral, with the 

restrictions mentioned earlier in the formulation of the problem: 

                                                                  ∆𝑃∗ =
α

β
.                                                      (14) 

If inductive resistance load phases are equal and active are not,  
i.e. 𝑋𝐴 = 𝑋𝐵 = 𝑋𝐶 = 𝑋; 𝑅𝐴 ≠ 𝑅𝐵 ≠ 𝑅𝐶 , then, according to (14): 

                        ∆𝑃1
∗ =

𝑅𝐴
2 +𝑅𝐵

2 +𝑅𝐶
2 −𝑅𝐴𝑅𝐵 − 𝑅𝐴𝑅𝐶 − 𝑅𝐵𝑅𝐶

𝑅𝐴
2+ 𝑅𝐵

2 + 𝑅𝐶
2+ 2𝑅𝐴𝑅𝐵 + 2𝑅𝐴𝑅𝐶 + 2𝑅𝐵𝑅𝐶 + 9𝑋2

.      (15) 

When reactive phase load is also compensated (Х = 0), then 

                                  ∆𝑃2
∗ =

𝑅𝐴
2 +𝑅𝐵

2 + 𝑅𝐶
2 −𝑅𝐴𝑅𝐵 − 𝑅𝐴𝑅𝐶 −𝑅𝐵𝑅𝐶

(𝑅𝐴 +𝑅𝐵 +𝑅𝐶)2
.                 (16) 

Having 𝑅𝐴 = 1, 𝑟𝑏 =
𝑅𝐵

𝑅𝐴
, 𝑟𝑐 =

𝑅𝐶

𝑅𝐴
, (16) gives a similar result to the one, stated 

in (Troitsky & Kostinsky, Durdykuliev, 2012): 
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                                             ∆𝑃2
∗ =

1+ 𝑟𝑏
2 + 𝑟𝑐

2 − 𝑟𝑏 − 𝑟𝑐 − 𝑟𝑏𝑟𝑐
(1 + 𝑟𝑏 + 𝑟𝑐)2

.                          (17) 

Figure 2 demonstrates a function graph (17) in the variation interval rb and 

rc from 0 to 1, in increments of 0,01. 

 
Figure 2. Function (17) graph –surfaces of the second order in the axes: X - rb (о.е),Y - rc 

(о.е),Z - ∆𝑃2
∗ (%) 

In addition to 𝑋𝐴 = 𝑋𝐵 = 𝑋𝐶 = 𝑋, we take up 𝑅𝐴 ≠ 𝑅𝐵 = 𝑅𝐶, i.e. only one 

active load differs from the active phase of the other two phases of the load, from 

the formula (15) we have  : 

∆𝑃1
∗ =

(𝑅𝐴 −𝑅𝐵)
2

(𝑅𝐴 + 2𝑅𝐵)2 + 9𝑋2
;  ∆𝑃2

∗ =
(𝑅𝐴 −𝑅𝐵)

2

(𝑅𝐴 + 2𝑅𝐵)2
, 

And from formula (17) – 

                                                         ∆𝑃2
∗ =

(1 − 𝑟𝑏)
2

(1 + 2𝑟𝑏)2
.                                               (18) 

Suppose 𝑅𝐴 = 𝑛 ∙ 𝑅𝐵, then: 

                                                            ∆𝑃2
∗ =

(𝑛 − 1)2

(𝑛 + 2)2
.                                                (19) 
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Having equal active (𝑅𝐴 = 𝑅𝐵 = 𝑅𝐶 = 𝑅) and unequal inductive  

(𝑋𝐴 ≠ 𝑋𝐵 ≠ 𝑋𝐶) load phase resistances formula (14) transforms into: 

                    ∆𝑃1
∗ =

𝑋𝐴
2 +𝑋𝐵

2 +𝑋𝐶
2 − 𝑋𝐴𝑋𝐵 − 𝑋𝐴𝑋𝐶 − 𝑋𝐵𝑋𝐶

𝑋𝐴
2 +𝑋𝐵

2 + 𝑋𝐶
2 + 2(𝑋𝐴𝑋𝐵 +𝑋𝐴𝑋𝐶 + 𝑋𝐵𝑋𝐶) + 9𝑅2

.            (20) 

If the load resistance in all the phases are the same, then ∆𝑃1
∗ = 0. 

When the balanced electromotive forces system is connected only to an 

inductive load only in a star connection with an isolated neutral, we get the 
formula for ∆𝑃2

∗, similar to the formula (16), with the only difference being that 

instead of the active it has inductive phase resistances:  

                              ∆𝑃2
∗ =

𝑋𝐴
2 + 𝑋𝐵

2 +𝑋𝐶
2 − 𝑋𝐴𝑋𝐵 − 𝑋𝐴𝑋𝐶 − 𝑋𝐵𝑋𝐶

(𝑋𝐴 + 𝑋𝐵 +𝑋𝐶)2
.                     (21) 

Suppose 𝑋𝐴 = 1, 𝑥𝑏 =
𝑋𝐵

𝑋𝐴
, 𝑥𝑐 =

𝑋𝐶

𝑋𝐴
. In this case (21) is similar to (17), i.е. 

                                       ∆𝑃2
∗ =

1+ 𝑥𝑏
2 + 𝑥𝑐

2 − 𝑥𝑏 − 𝑥𝑐 − 𝑥𝑏𝑥𝑐
(1 + 𝑥𝑏 + 𝑥𝑐)2

.                            (22) 

When the reactive load only in one phase, for example A, is different from 

reactive loads in other two phases, then from equations (20) and (21) it follows 

that  

∆𝑃1
∗ =

(𝑋𝐴 −𝑋𝐵)
2

(𝑋𝐴 + 2𝑋𝐵)
2 + 9𝑅2

, ∆𝑃2
∗ =

(𝑋𝐴 − 𝑋𝐵)
2

(𝑋𝐴 + 2𝑋𝐵)
2, 

and from formula (22) –  

                                                      ∆𝑃2
∗ =

(1 − 𝑥𝑏)
2

(1 + 2𝑥𝑏)2
.                                                 (23) 

 Supposing 𝑋𝐴 = 𝑛 ∙ 𝑋𝐵, we have (19). 

If the load is only one phase, for example A, i.e. 𝑅𝐴 + 𝑗𝑋𝐴 ≠ 0,𝑍𝐵 = 0, 𝑍𝐶 = 0,  

then (see (14)): 

∆𝑃∗ =
𝑍𝐴
2

𝑍𝐴
2 = 1. 

This particular case confirms the “capability” of the general formula for the 

additional losses from the negative-sequence currents. 

Full power of the considered unbalanced load is the sum of the power 

phases:   

�̇� = �̇�𝐴 + �̇�𝐵 + �̇�𝐶 =
�̇�𝐴
2

𝑍𝐴
2 ∙ 𝑍𝐴 +

�̇�𝐵
2

𝑍𝐵
2 ∙ 𝑍𝐵 +

�̇�𝐶
2

𝑍𝐶
2 ∙ 𝑍𝐶 . 

Using the complex values of the phase voltages of (2) - (4), we define the 

values of the square moduli. 

Square complex phase voltage A: 

�̇�𝐴
2 =

3𝑈2

|𝑍|
2 ∙ |𝑍𝐴|

2
∙ |𝑍𝐵𝑒

−𝑗600 + 𝑍𝐶|
2
. 

Total phase А capacity: 

�̇�𝐴 =
3𝑈2

|𝑍|
2 ∙ |𝑍𝐵𝑒

−𝑗600 + 𝑍𝐶|
2
∙ 𝑍𝐴. 

Squares of complex voltages and total capacity phases B and C: 
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�̇�𝐵
2 =

3𝑈2

|𝑍|
2 ∙ |𝑍𝐵|

2
∙ |𝑍𝐴𝑒

𝑗2400 − 𝑍𝐶|
2
;  �̇�𝐵 =

3𝑈2

|𝑍|
2 ∙ |𝑍𝐴𝑒

𝑗2400 − 𝑍𝐶|
2
∙ 𝑍𝐵; 

�̇�𝐶
2 =

3𝑈2

|𝑍|
2 ∙ |𝑍𝐶|

2
∙ |𝑍𝐴𝑒

𝑗1200 − 𝑍𝐵|
2
;  �̇�𝐶 =

3𝑈2

|𝑍|
2 ∙ |𝑍𝐴𝑒

𝑗1200 − 𝑍𝐵|
2
∙ 𝑍𝐶 . 

Total load capacity: 

    �̇� =
3𝑈2

|𝑍|
2 ∙ (𝑍𝐴|𝑍𝐵𝑒

−𝑗600 + 𝑍𝐶|
2
+ 𝑍𝐵|𝑍𝐴𝑒

𝑗1200 + 𝑍𝐶|
2

+ 𝑍𝐶|𝑍𝐴𝑒
𝑗1200 − 𝑍𝐵|

2
) .                                                                  (24) 

Formula (24) can be written in a compact form: 

                                            �̇� =
3𝑈2

𝑍2
∙ (𝑑 ∙ 𝑍𝐴 + 𝑒 ∙ 𝑍𝐵 + 𝑓 ∙ 𝑍𝐶),                            (25) 

Where: 

𝑑 = |𝑍𝐵𝑒
−𝑗600 + 𝑍𝐶|

2
= 𝑍𝐵

2 + 𝑍𝐶
2 + 𝑅𝐵𝑅𝐶 +𝑋𝐵𝑋𝐶 +√3(𝑅𝐶𝑋𝐵 − 𝑅𝐵𝑋𝐶); 

𝑒 = |𝑍𝐴𝑒
𝑗1200 + 𝑍𝐶|

2
= 𝑍𝐴

2 + 𝑍𝐶
2 + 𝑅𝐴𝑅𝐶 + 𝑋𝐴𝑋𝐶 + √3(𝑅𝐴𝑋𝐶 − 𝑅𝐶𝑋𝐴); 

𝑓 = |𝑍𝐴𝑒
𝑗1200 − 𝑍𝐵|

2
= 𝑍𝐴

2 + 𝑍𝐵
2 +𝑅𝐴𝑅𝐵 + 𝑋𝐴𝑋𝐵 +√3(𝑅𝐵𝑋𝐴 −𝑅𝐴𝑋𝐵); 

𝑍2 = 𝑍𝐴
2𝑍𝐵
2 + 𝑍𝐴

2𝑍𝐶
2 + 𝑍𝐵

2𝑍𝐶
2 + 2𝑍𝐴

2(𝑅𝐵𝑅𝐶 + 𝑋𝐵𝑋𝐶) + 2𝑍𝐵
2(𝑅𝐴𝑅𝐶 + 𝑋𝐴𝑋𝐶) + 

+2𝑍𝐶
2(𝑅𝐴𝑅𝐵 +𝑋𝐴𝑋𝐵), 

and its orthogonal components – real and reactive power – are respectively: 

                                             𝑃 =
3𝑈2

𝑍2
∙ (𝑑 ∙ 𝑅𝐴 + 𝑒 ∙ 𝑅𝐵 + 𝑓 ∙ 𝑅𝐶);                          (26) 

                                             𝑄 =
3𝑈2

𝑍2
∙ (𝑑 ∙ 𝑋𝐴 + 𝑒 ∙ 𝑋𝐵 + 𝑓 ∙ 𝑋𝐶).                           (27) 

Using equations (26) and (27), we write the expression of reactive power 

coefficient for the general case of unbalanced active inductive three-phase load:  

                                           tan𝜑 =
𝑄

𝑃
=
𝑑 ∙ 𝑋𝐴 + 𝑒 ∙ 𝑋𝐵 + 𝑓 ∙ 𝑋𝐶
𝑑 ∙ 𝑅𝐴 + 𝑒 ∙ 𝑅𝐵 + 𝑓 ∙ 𝑅𝐶

.                         (28) 

Functions (14), (25) ... (28) in expanded form, expressed through six 

arguments (RA, RB, RC, XA, XC, XB), are lengthy. Network might use them 

numerically. Finding their global extrema is a difficult task. Therefore, the 

study was carried out for the special cases that occur in the production practice. 

It is known that pulsating power of a three-phase unbalanced system is 

equal to the sum of pulsating power phases:  

                                               �̇� = �̇�𝐴 ∙ 𝐼�̇� + �̇�𝐵 ∙ 𝐼�̇� + �̇�𝐶 ∙ 𝐼�̇� .                                    (29) 

Substitute in (29) the value of the electromotive force and the current phase 

of the expressions (2) ... (7). After some transformations we obtain:  

                                           �̇� = 3𝑈2 ∙
𝑍𝐴 + 𝒂 ∙ 𝑍𝐵 + 𝒂

2 ∙ 𝑍𝐶
𝑍𝐴𝑍𝐵 + 𝑍𝐴𝑍𝐶 + 𝑍𝐵𝑍𝐶

.                                   (30) 

As it follows from (30), N = 0, if 

𝑍𝐴 + 𝒂 ∙ 𝑍𝐵 +𝒂
2 ∙ 𝑍𝐶 = 0, 

which is equal to 𝑍𝐴 = 𝑍𝐵 = 𝑍𝐶 . 
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In order to confirm the obtained functional connections for calculation of 

additional real-power losses in the double-wound supply transformer caused by 

an unbalanced active inductive load in a star connection with an insulated 

neutral, researchers conducted a series of experiments on the “distribution 

transformer - unbalanced load” model.  

Based on measurements and calculations, authors built the functional 

connections to the real-power losses and calculation tolerances of real-power 

losses of the load factor. Below is an analysis of the experimental data for the 

star load connection scheme with an insulated neutral (Figure 1). The 

experimental functional connections are well approximated by polynomials of 5th 

degree (Figures 3 – 8). 

When changing the load coefficient in the range of 0.2 - 0.4, the loss 

difference in unbalanced and balanced modes varies slightly, which is consistent 

with the physics of the process (Figure 3). We deal with no-load mode (relatively 

constant losses). In the range of 0.4 - 1.0 loss difference with unbalanced and 

balanced modes increases. Its average value 14.33%. 

Using the classical formula (ΔP = ΔPх + CL · ΔPк) lowers the losses, as 

opposed to the actual and proposed functional connections for calculating the 

real-power losses from unbalanced mode of active inductive load and have the 

smallest tolerance (Figure 4). 
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Figure 3. Functional connection of real-power losses in a transformer to the load 
coefficient: 1 – at unbalanced active inductive load; 2 – at balanced active inductive load; 3 
– the functional connection of real power losses in a transformer at active inductive load to 
the pulsating power of the three phases. 
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Figure 4. Functional connection of real-power losses in a transformer at the unbalanced 

active inductive load to the load coefficient: 1 – experimental; 2 – calculated with the 

classical formula; 3 – based on the asymmetry of active inductive load to the pulsating 

power of the three phases. 
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Figure 5. Functional connection of real-power losses to the load coefficient at unbalanced 
active inductive load: 1 – according to the classical formula; 2 – at classical formula, based 
on the obtained functional connection. 

In the variation range of the load coefficient of 0.2 - 0.367, calculation 

tolerance according to the classical formula, based on the resulting functional 

connection, is negative, and from 0.367 to 1.0 it is positive, with a maximum 

tolerance of 7.98% at a load coefficient of 1.0 (Figure 5). The average tolerance of 

0.2 to 1.0, according to the classical formula with load coefficient equals 11.5%, 

while based on the proposed functional connections of 1.34%. 

The graph of real power from the pulsating power loss (Figures 3 – 6, curve 

3) repeats the functional connection graph of the real-power losses to the load 

coefficient at unbalanced active loads, i.e. it is a feature of an unbalanced mode. 
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When changing the load coefficient in the range of 0.2 - 1.0, loss difference 

at unbalanced and balanced modes remains conditionally unchanged, as shown 

in Figure 6. In the range of 0.2 - 1.0 loss difference with unbalanced and 

balanced load is 9.62%. 
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Figure 6. Functional connection of real-power losses in a transformer to the load 

coefficient: 1 – at unbalanced active load; 2 – at balanced active load; 3 – the functional 

connection of real power losses in a transformer at unbalanced active load to the pulsating 

power of the three phases. 
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Figure 7. Functional connection of real-power losses in a transformer at unbalanced active 

load to the load coefficient: 1 – experimental; 2 – calculated with the classical formula; 3 – 

based on the asymmetry of active inductive load (using the obtained functional 

connection). 
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Calculations according to the classical formula give low loss, as opposed to the 

actual, while the proposed functional connection for calculating the real-power 

losses to active load unbalanced mode have the smallest tolerance (Figure 7). 
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Figure 8. Functional connection of calculation tolerances of real-power losses to the load 

coefficient at unbalanced active inductive load: 1 – according to the classical formula; 2 – 

at classical formula, based on the obtained functional connection. 

In the variation range of the load coefficient of 0.2 - 1.0, calculation 

tolerance, based on the resulting functional connection, is negative, with a 

maximum tolerance of -23.95% while load coefficient is 0.2 (Figure 7). The 

average tolerance in load coefficient of 0.2 to 1.0 according to the classical 

formula is -19.46%, and based on the proposed functional connection -11.33%. 

Thus, the real-power losses, calculated according to the classical formula, 

should be adjusted in accordance with the developed functional connection.  

Discussion and Conclusion 

The results can be applied in the development of new technological 

solutions, based on the functional connection submitted in the article, aimed at 

improving energy efficiency and reducing active power losses in transformers of 

urban and industrial distribution networks of electric power systems. Using 

these solutions can increase the profit of companies engaged in the distribution 

of electrical energy, and the release of additional funds for their modernization 

and technical re-equipment. 

From the comparison of the right sides of (15) and (16) it follows that at the 

compensated reactive load of phases relative values of the real-power of the 

negative-sequence current loss compared to the positive-sequence current loss is 

greater than at the uncompensated, i.e. 
  12 PP  

Although the functions (14) and (25) ... (28) in the expanded form, expressed 

through six arguments are lengthy and the determination of their global 

extrema is a difficult task, for a particular network their study is possible 

through numerical methods (Troitsky & Kostinsky, Durdykuliev, 2012). Due to 

their simplification they are convenient for programming. 
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Implications and Recommendations 

Authors offer a functional connection to determine the value of additional 

real-power losses in transformers to unbalance load in a star connection with an 

insulated neutral. The practical value of the proposed functional connection is 

that it allows determining the estimated value of real-power losses in 

transformers from the asymmetry of the measured values of voltage, current 

and real power for each phase. 

The application of the developed functional connection, based on the 

“distribution transformer – unbalanced active inductive load” module, is possible 

in the organizations involved in the design, replacement and upgrading of 

transformer substations of urban and industrial distribution networks of electric 

power systems in order to increase energy savings in them. The experimental 

data obtained in the measurement of the “distribution transformer - unbalanced 

load” module reaffirmed the need to adjust the classical formula for the 

calculation of losses in the transformer. 
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