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Introduction 

The demand for processing large volumes of data continues to grow. It can 
be statistical analysis, pattern discovery, social networking and other 
applications. One of the topics of big data processing is multi-criteria 
optimization (MCO-problem). The classical approach to solving MCO-problem is 
transforming it into a set of global single criteria optimization problems. Now a 
relatively new approach is emerging based on creation of a multi-dimensional 
Pareto approximation of the data set, using a fixed number of dimensions. The 
resulting Pareto front is presented to the decision maker, allowing to use 
informal methods for selecting solution – one of the points on the front. 
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 ABSTRACT 
Importance: The article raises a point of visual representation of big data, recently 
considered to be demanded for many scientific and real-life applications, and analyzes 
particulars for visualization of multi-dimensional data, giving examples of the visual 
analytics-related problems. Objectives: The purpose of this paper is to study application 
of Andrews plots to visualization of multidimensional data. Methods: Application of 
Andrews plots to multidimensional data visualization is investigated herein by means of 
analysis, logical generalization, scientific abstraction. Results: The direct interaction 
between the analyst and the visualization system projecting the multi-dimensional data 
into spaces with fewer dimensions, supporting formulation and testing of the hypotheses 
regarding the nature and the data structure have been researched. The article seems to 
be useful for working with multidimensional dataset to optimize the process. 
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Humans are better at processing visual information, so it makes sense to 
use graphics to present the results of the approximation. If the number of 
criteria in the MCO is two or three than the visualization approach is easy, if 
not obvious. For a greater number of criteria the MCO visualization becomes 
increasingly problematic. 

Modern problems related to big data analysis demand faster evolution of 
algorithms and their programmatic implementation, enabling the solutions to 
keep pace with the growing demand and complexity. Some answers comprise a 
relatively new interdisciplinary branch of computer science – the visual 
analysis, which is rapidly proliferating in all aspects of applied researches from 
medicine to social sciences.  

We will propose a system purposed on visually analyzing multidimensional 
data, and will consider classical problems of multidimensional data analysis, 
such as cluster analysis, building object classification rule sets, building 2d 
projections of the multidimensional datasets into various coordinate systems. 
The system will enable the user: As part of the system being developed, the 
classical problems of multivariate data analysis were stipulated, such as: the 
construction of clusters and their shells in a multidimensional data cloud, 
building a system of decision rules to classify objects procedures, the 
implementation of multi-dimensional display of data volume in two-dimensional 
projections of all possible pairs of coordinates. The developed system allows 
users to: 

¾ Directly view and manipulate data projections in two and three 
dimensional spaces; 

¾ Interactively validate hypotheses regarding the presence and the nature 
of the clusters using the methods of geometric modeling; 

¾ Display cluster boundaries closely approximating closely approximating 
the data in the selected sets of coordinates based on the main features; 

¾ Make decisions regarding developing object classification rulesets; 
¾ Conduct visual search of the clusters through multiple two-dimensional 

projections and weigh the importance of various coordinates from the dispersion 
point of view. 

It’s important to note that the proposed system of interactive visual 
analysis can also be used as a basis for further application of the methods of 
mathematical analysis of multidimensional data, using the geometric depictions 
as the initial hypothesis/approximation for precise calculations (Li-Xin & Wang, 
2003; Mamdani, 2008; Wang & Mendel, 1992; Zadeh, 1994).  
Methodological Framework  

Typical Data Visualization Methods  

There is a relatively large set of typical approaches to data visualization, 
each presents different advantages and challenges. To help optimization of 
selection of the most suitable visualization methods, we consider three following 
fundamental attributes of the methods (Belous et al., 2015): 

¾ Attributes of data that has to be visualized with the specified method; 
¾ Sample visualizations of various data using the specified visualization 

method; 
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¾ Ability to change the visualization method and to interact with any 
visualization produced by the selected method. 

¾ The following data types suit well for visualizations: 
¾ One-dimensional data – data rows, time sequences, mathematical 

sequences and single value functions, etc.; 
¾ Two-dimensional data – (x,y) coordinates, geographic coordinates, vector 

functions, etc.; 
¾ Multidimensional data – financial results, results of experiments, 

metadata, etc.; 
¾ Texts and hypertexts – news articles, web documents, books, periodicals, 

etc.; 
¾ Hierarchical and connected data – organizational structure, social 

network, enterprise data flow; 
¾ Physical, chemical and other processes, information streams – sensor 

data, stock data, electric currents, etc. 
The visual concepts and implementation algorithms vary for each type of 

data enumerated above. Within the interactive visualization system, discussed 
herein, the following typical problems have been resolved: 

Approaching of the cluster analysis problems through the 3D projection 
method enables the user to interactively work with projections of the original 
multi-dimensional in three dimensions, by the user’s selection from the original 
sets of coordinates. The user is able to interactively build various clusters and 
cluster shells. To build the projection, a parameter d, corresponding to the 
furthest distance inside the cluster, is selected. If the distance between two 
points in the original cluster is less than d, that the two points are connected. 
The original points are represented as spheres and the connections between 
them as cylinders (Figure 1). 

The optical model also includes the density of the color of the cylinder, the 
closer the points, the deeper shade of blue is. 

 
Figure 1. Multi-point 3D projection  
 

The user can analyze a cluster depending on the selection of the parameter 
d. The analysis can be performed in two ways – sequential review of one model 
at the time for each d selected by the user, or selection of two values of d and 
auto generation of a series of transformation from one value to another 
(animation).  

To analyze the shape of the cluster, its 3D shell is constructed by building a 
right-angled parallelepiped, by using an overlapping spheres method, or by 
mixing both approaches.  
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The right-angled parallelepiped is constructed around the axes, generated 
by the method of selecting the main components. This approach guarantees a 
close approximation of parallelepiped to the cluster (Figure 2). 

 

 
Figure 2. The right-angled parallelepiped cluster shell  
 

The second method generates spheres with the center in each point of the 
cluster, and the radius equal to the largest distance from the center to any other 
point, which a priori is less than or equal to d. The surface of the area where 
spheres overlap presents the cluster shell that obviously includes all points in 
the cluster and provides a good approximation (Figure 3). This method is better 
than the previously described when the values of the correlation matrix inside 
the cluster are relatively close.  

The mixed approach assumes building the shell using both methods, and 
then selecting the overlapping area. 
 

 
Figure 3. The overlapping spheres cluster shell 

 
To solve the problem of a discriminant analysis using 2D and 3D projection 

methods, the user is able to create planar surfaces that separate different 
classes of points, when projecting multi-dimensional data sets into 2D and 3D 
original sets of coordinates.  

The basic supposition of the discriminant analysis is the assumption that 
there are two or more groups that in some parameter differ from the other 
groups, and these parameters can be measured either by using interval or 
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relationship scale. The discriminant analysis helps to highlight the differences 
between the groups and allows to classify data points based on the maximum 
similarity. 

The main method of solving the discriminant analysis problem is the 
method of defining the R.A. Fisher’s (1936) hyperplane. As a result of the 
research, the method, ultimately selected to build the Fisher’s hyperplane? Is to 
generate a sequence of projections. The idea is that is if we can build the 
separating hyperplane in a given space, this plane will continue to separate 
classes when a dimension is added. The algorithm presumes sequential review 
of 2D and 3D projections in order to find the separating plane or a system of 
planes (Figure 4).  

 

 
Figure 4. Separating lines for two groupings of points. 

 
After the generation of the separating system, the user is able to verify the 

result by creating a system of formal rules. Upon completion of verification, 
these rules can be applied to the classification problem of the new points added 
to the original multi-dimensional set (Figure 5). 

 
Figure 5. Classification of new points 
 

This method helps to make decisions regarding the rules for classification of 
the new objects.  

Solving the problem of cluster identification using a 2D projection, and 
implementing an interactive system allow the users to work simultaneously 
with all projections of the original multi-dimensional data set into varying 2D 
subspaces generated from the original set of coordinates. Given that points close 
to each other in all 2D projections will be close in the original space as well, the 
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user of the interactive system can remove, add and color close points in the 2D 
projection. All user actions are simultaneously reflected in all projections.  

The solution algorithm: 
Step 1. The points from the original multi-dimensional data set are project 

into all 2D subspace (planes) generate by the pairs of the original coordinates. 
This process results in the projection matrix (Figure 6). 

 

 
Figure 6. Projection matrix 
 

Step 2. Candidates are selected on one of the projections cluster. 
Step 3. The rest of the projections is reviewed and the points far removed 

from the main body are excluded from further consideration.  
Step 4. The remained points are marked as a cluster, and are excluded from 

further consideration. If there are no obvious cluster candidates (single random 
points) then proceed to step 5, otherwise return to step 2.  

Step 5. The result is the initial breakdown of the multi-dimensional dataset 
in the clusters. To further improve the result, the k-means algorithm is applied. 
For better illustration of the result of the clustering process, the system 
implements the profile diagram (Figure 7) as a means of 2d representation of the 
cluster entities. 
 

 
Figure 7. The profile diagram 
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As a result, the user can also identify the points that can potentially belong 
to more than one cluster, and determine the rules to resolve this problem, if 
necessary.  
Geometric Transformations Methods  

The following visualizations are using methods involving geometric 
transformations: 

¾ Scatter graphs 
¾ Parallel coordinates 
¾ Pixel-oriented method 
¾ Patterns of recursion 
¾ Cyclical segments 
¾ Hierarchical visualizations 
¾ Dimensional over imposition 
Data visualizations produced using the specified methods aren’t always 

sufficient. The user has to have an ability to manipulate these visualizations, to 
view them from various angles, scale them up and down, add relative markings 
such as min, max, average, trend, etc. This requires implementation of the 
supporting functionality: 

¾ Dynamic projections; 
¾ Interactive filtering; 
¾ Scaling and zooming; 
¾ Interactive distortion; 
¾ Interactive combination. 
The main idea behind the dynamic projection is to dynamically project 

objects onto a 2D or 3D space when researching a multi-dimensional dataset. As 
an example, project all interesting objects onto a 2D plane as a scatter plot. It is 
important to note that the number of possible projections grows exponentially 
with the increase in the number of dimensions, and therefore having all 
projections displayed at once will be difficult to grasp.  

When researching large data sets (Big Data), it is important to have the 
capability to separate the data sets, and identify interesting subsets, and it is 
important that selecting those subsets and filtering the data is performed in real 
time or near-real time. The selection of the subset can be done directly from the 
data list, or by defining filtering attributes for the selection criteria. 

The main idea behind combination with the visualization method is to 
emphasize advantages and to minimize shortcomings of each individual 
visualization method. For instance, combining a scatter plot with a color map or 
a heat map can provide a more information-rich visualization taking exactly the 
same screen space and a comparable amount of time to produce. 

Any visualization tool can be classified by all three key parameters – by the 
type of data it visualizes, by the type of visual representation it produces and by 
the type of interaction with the visualizations it enables. Obviously a single tool 
or product can support multiple datatypes, different visualization methods, and 
types of interactions.  
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Pixel-Oriented Methods  

The main idea behind the pixel-oriented methods is projection of a value 
from each dimension into a colored pixel, and the grouping of the pixel by their 
respective dimensions. Since one pixel reflects a single value, this method allows 
to directly reflect over a million data points on a single standard monitor and 
over 8 million data points on a UHD monitor (8.3 megapixels). 

One of the primary interaction techniques for pixel-oriented methods is 
zooming. An example of zooming is a “Magnifying Glass” (AKA the “Lens”), its 
primary function is to provide custom filtering for visualization. The data shown 
under the “Magnifying Glass” are filtered and enlarged, and so they are 
differentiated from the basic data. The Lens shows the modified image of the 
selected subset of date (data region) in detail, whereas the remaining data points 
are not being detailed.  

Zooming is a well-known approach to interaction, used in almost all 
applications. When working with a large data set, it has the advantage of 
presenting the overall picture, and at the same time allows for reflection of each 
specific subset in detail. Zooming may consist not only of a simple enlargement 
of objects, but for changing the levels of data representation. For instance, on a 
lower level the object, represented by a pixel, can be shown as an image, and at 
even lower level as a text string. 

The method based on interactive distortion supports the data research 
process by dynamically changing the zooming scale and presenting more 
detailed information. The idea is to simultaneously display all the data at a low 
level of detail, while simultaneously showing parts of the data in higher detail. 
Most common methods producing this effect are considered to be hyperbolic and 
spherical distortions. 
Hierarchical Images 

Hierarchical images are used to reflect hierarchical and other types of 
relationships in the data. The following methods a typically used to build the 
hierarchies: 

¾ hierarchical axes; 
¾ dimensional superimposition; 
¾ trees; 
Hierarchical axes are being reflecting data attributes, with the first axis 

being of the attribute with the most variation. This method can reflect up two 20 
attributes on a single screen, for a larger number of attributes it is possible to 
use the dimensional superimposition and generate a tree-like structure.  

The idea behind the dimensional superimposition is to insert one system of 
coordinates inside another. For instance, one pair or triplet of attributes creates 
one system of coordinates, and another set creates a different coordinate system, 
that is inserted into the first one, thus the first set of attributes creating the 
external system, while the second set creating the inserted system. The process 
can be repeated multiple times to accommodate large number of attributes.  

The scientific quality of this visualization method is heavily depends on the 
selection of the external coordinate system, therefore selection the attributes, 
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used for creating the external system, should start with the most important 
dimension.  

For visualization of tree structures, two primary methods are typically 
used: 

¾ tree maps; 
¾ canonical trees; 
Tree maps hierarchy divide the screen by filling out the visible space, using 

the demarcation for the visualization of the trees. Color is used to represent the 
content of the node. Varied brightness, textures and shading can be utilized to 
provide a more robust visualization.  

A canonical tree is a “tree-like” interactive structure that can be rotated, 
with the branches that can be expanded, showing more data, or collapsed by the 
user.  
Results 

In his work D.F. Andrews (1972) proposed a simple and convenient method 
for reflecting big data set on a surface. If the data have the fixed number of m, 
then every point х = (x1,..., хm), where xi, (i = 1, ..., m) – are variables, can be 
represented by the following Fourier function: 
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Moreover, if хki, (k = 1, ..., m; i = 1,..., п) – are un-correlated random numbers 
with the dispersion 2s , than the following equation is also true: 
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As a result we have 
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Thus D.F. Andrews (1972)  plots preserve the information about mean 

values, distance and dispersion and produce a large number of one-dimensional 
projections onto the vectors (2-1/2, sin t, cos t, …)(– π < t < π). Since the 
distances between D.F. Andrews (1972)  plots are a linear reflection of the 
distances between data points, the two plots that a closer to each other 
correspond to the two points that are closer as well. This property proves very 
useful when representing big datasets. 
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To illustrate the application of Andrews plots, let’s consider R.A. Fisher’s 
(1936) Irises as the original multi-dimensional data (Fisher, 1936; Embrechts, 
1991). Fisher’s Irises is a set of data for a classification problem, used in 1936 by 
Ronald Fisher (1936) to demonstrate the workings of his discriminant analysis 
method. This data set has become a classic and is frequently used for illustration 
of various data-related algorithms. 

R.A. Fisher’s (1936) Irises set consists of the data about 150 iris flowers – 50 
of each of the three species – Iris setosa, Iris virginica and Iris versicolor. For 
each flower four characteristics were recorded: x1 – sepal length, x2 – sepal 
width, x3 – petal length, x4 – petal width. 

There is a number of points that stand out in class setosa. Classification of 
the Fisher’s Irises is a four-dimensional problem, and its visualization is 
relatively simple. The problems begin with a large number of dimensions. This 
data set is shown as an Andrews plot in Figure 8.  

Please note that the lines corresponding to similar values also have a 
similar shape, and the number of dimensions is irrelevant – each point will 
always have a single corresponding line in the plot. It also clearly shows how 
class setosa stands apart from the other two classes. For instance all lines are 
very closely located around the t0 = -2,5. It means that in the direction 
perpendicular to the vector 
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the data cloud is mostly flat, so it makes sense to reduce the number of 
dimensions from four to three. 

 
Figure 8. D.F. Andrews (1972) Plots of R.A. Fisher’s (1936) Irises 
 

Classes virginica and versicolor are expected more difficult to be 
distinguished. As expected, it is difficult to distinguish class virginica and 
versicolor class, although on some intervals of t the difference is very clear. For 
instance on the interval [-2.5; -1.5], both classes demonstrate different curves. 
An interactively created plot would allow to highlight this difference from 
vividly. Also please note some potentially remote lines in the versicolor class. 
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The main advantage of the Andrews diagram in this case is that we produced a 
clear and easily readable presentation of the data.  

For better readability of the data various orthogonal projections into flat 
coordinate system, or projections into certain subspaces. In this case we will 
review only the case of inclusion or of the x-coordinate. The equation for the plot 
after its projection contains хj = 0, (j = 1, ..., m). For instance if xj = 0 it’s difficult 
to differentiate the plots, which indicates a weak dispersion of the data along 
that coordinate, and vice versa. This technique is directly applicable to the data 
research (Embrechts, 1991). 

Range of one of the coordinates can exceed the ranges of other coordinates 
by so much, that it will obfuscate the influence of all other coordinates on the 
plot. To avoid that coordinate scaling is applied as follows. Let’s say we have a 
set of n points xi = (x1i, …, xmi) (i = 1, …, n) in a multi-dimensional space. Let’s 
assume we also have a function 
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Let’s assume y is a point that corresponds to x after the scaling, then the 
relative distances along the axis will remain unchanged, moreover for an 
uncorrelated set of data with normal distribution the following equation is 
correct: 
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As a basic rule we can assume that correlated variables should be grouped, 
and the significantly discriminating variables should be assigned different 
frequencies. To illustrate the proposed method of projection, using trigonometric 
functions, to project the data into the subspace хk = 0, (k = 1, 2, 3, 4). 
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So we have researched the application of the mathematical apparatus to 
construct Andrews plots. As a base set of data we used Fisher’s Irises, the classic 
set of data for the classification problem. We’ve shown that building Andrews 
plots using Fourier functions and polynomial functions produces similar results, 
which in turn suggest that Andrews plots can be used to analyze a wide variety 
of multi-dimensional data. We’ve also shown the advantages and disadvantages 
of application of these types of functions. 
Discussions and Conclusion 

In practical terms, visual analytics can be viewed as interactive problem-
solving via a visual interface, in other words visual analytics is a way to 
organize computer-human interface to amplify individual’s analytical skills (Big 
Data Visualization, 2013; Dillon, 1984; Keim, Qu & Ma, 2013; Maletic, Marcus & 
Collard, 2002; Manakov, Mukhachev & Shinkevich, 2003; North, 2006; 
Shneiderman, 2014; Shneiderman, 1996). 

Basic approaches and algorithms of visual analytics are described in the 
works (Keim et al., 2008a; Keim et al., 2008b; Keim et al., 2010; Kielman & 
Thomas, 2009; Thomas & Cook, 2005). Same works demonstrate a series of 
applications of contemporary visual analytics in various aspects of human 
activity, as well as descriptions of a number of software products, developed for 
visual analytics. 

Careful review of the literature containing specific applications of visual 
analytics reveals that in reality a lot less attention is paid to the systems 
focusing on multi-dimensional data, when compared to the systems reflecting 
the results of the application of the modern Data Analysis methods (Assuncao et 
al., 2014; Baker & Wickens, 1995; Dasgupta, Chen & Kosara, 2012; Fout & Ma, 
2012).  

We have presented problems related to the interactive system for 
visualization of multidimensional data. The main purpose of this system is to 
utilize interactive capabilities in working with 2D and 3D projections of the 
original multidimensional dataset to create and test initial hypotheses or 
approximations regarding the structure, the nature and the relative positioning 
of the data points inside the studied dataset.  

The materials of the article are of practical value to the visual analysis of 
data in different size spaces. 
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