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Where do scientists’ superior abilities originate from when generating a creative idea? What 

different brain functions are activated between scientists and i) general academic high 

school students and ii) science high school students when generating a biological hypothe-

sis? To reveal brain level explanations for these questions, this paper investigated neural 

connectivity differences between general and science high school students and biologists 

during hypothesis-generating and hypothesis-understanding using fMRI. Researchers de-

signed two sets of task paradigm on biological phenomena, one for hypothesis-generating 

and the other for hypothesis-understanding. Thirty-six healthy participants (twelve partici-

pants per group) were given hypothesis generating and understanding tasks. Results showed 

strong interconnections of functional connectivity in the biologist group, which is acknowl-

edged as possessing superior hypothesis generation skills. The group was also found to 

have significant functional connectivity between the frontal cortex and the mesolimbic sys-

tem, which has been documented as the fronto-striatal pathway. Moreover, the biologist 

group recorded higher interconnections in other functional connectivities known to be asso-

ciated with hypothesis-generating. Taken together, it can be concluded that the hypothesis-

generating skill gap between groups resulted from activation of particular regions as well as 

interconnections of functional connectivity related to network fluidity. Specially, the biolo-

gists’ hypothesis-generating superior skill resulted from highly strengthened interconnec-

tions of functional connectivity.   

 

Keywords: High school student; Biologist; Functional brain connectivity; Hypothesis-generating; 

Functional magnetic resonance imaging (fMRI) 

 

Introduction  

How do biologists generate hypotheses from actual complex biological phenomena? Where do 

their excellent hypothesis-generating abilities stem from? In terms of the hypothesis-generating 

process as it relates to complex natural phenomena, what difference exists among the following 

three groups – general high school students, science high school students, and biologists? For 

several years, psychologists, scientists, and teachers have been seeking answers to these ques-

tions because the answers would make it possible to educate general high school students to the 

level of a scientist (Kwon & Lee, 2007; Lawson, 2002; Jin, Kwon, Jeong, Kwon, & Shin, 2006a; 

Thargard, 1998). There have been many studies on the hypothesis-generating skills of scientists 

and gifted high school science students; yet, most of these studies dealt only with observable 
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results (Kwon & Lee, 2007).  

Thus far only a few studies, in various fields, have discussed the idea that neural substrates, 

while maintaining the same cognitive function or sensory-motor skill, can differ according to 

group type (Chen et al., 2006; Kawashima et al., 2004; Kirk, Skov, Christensen, & Nygaard., 

2008; Lotze, Scheler, Tan, Braun, & Birbaumer, 2003; Percio et al., 2008; Scanderbeg et al., 

2005; Wright, Matlen, Baym, Ferrer, & Bunge, 2008).  These researches have all concluded that 

differences in brain activation contribute to differences in ability.  Despite these conclusions, 

however, no study has explored group differences as they relate to hypothesis-generating and 

hypothesis-understanding. Furthermore, all previous studies have focused solely on particular 

regional activations.  

Some recent studies have proven that an individual’s biological hypothesis-generating skill 

can generate difference in group brain activation. The hypothesis-generating research of Lee, 

Lee, Jeong, & Kwon (2008) through fMRI also provided evidence of differences in the levels of 

brain activation regions and signal intensity among scholars (biologist vs. humanist).  

A hypothesis is a high-order inferential process that requires complex subordinate cognitive 

format (Lawson, 1995). From a cognitive psychological perspective, hypothesis generation has 

been regarded as a causal inference (Kwon, Jeong, & Park, 2006; Lawson; 1995), and it has been 

suggested that making causality is clearly rooted in perceptual experience (Hanson, 1958). How-

ever, it goes beyond perception in inferring relationships. It includes the retrieval and activation 

of information within long-term memory (LTM), the appropriate selection of relevant semantic 

information, the short-term retention of information within working memory, and the encoding of 

information into people’s LTM (Kuperberg, Lakshmanan, Caplan, & Holcomb, 2006). Therefore, 

an intimate connection among all brain regions is necessary for successful hypothesis generation. 

In other words, the hypothesis-generating skill cannot be fully understood by only examining 

differences between brain activation regions or differences in the levels of particular regions. An 

alternative explanation can be found in functional connectivity.  This concept can explain intensi-

ty among brain regions and is often used by scientists who research the human brain in terms of 

network units. 

It was once reported by Koshino et al. (2005) that difference in cognitive functions between 

a normal group and a high-functioning autism group is related to differences in functional con-

nectivity. In a recent study on biological hypotheses by Jin, Kwon, Jeong, Kwon, and Shin 

(2006a), mutual information analysis through EEG readings revealed relatively higher infor-

mation transmission amongst gifted-children. They also concluded that gifted-children more effi-

ciently distribute cognitive resources needed to cope with hypothesis-generating. The experiment, 

however, used a 16-channel EEG, which due to its low space resolution, could not fully reveal 

the exact region or network structure employed by the gifted-children. The experiment also did 

not reflect the hypothesis-understanding process, for it was limited to the hypothesis-generating 

process.  

Therefore, this study hypothesized that differences in hypothesis-generating skills among 

groups could be due to differences in brain functional connectivity. If this hypothesis is proven 

correct, it would suggest that functional connectivity in the brain is controlled by differences in 

hypothesis-generating ability. 

The purpose of this study is to test this hypothesis as it relates to differences in neural 

connectivity between general high school students, science high school students, and biologists 

during hypothesis-generating and hypothesis-understanding using fMRI. Not only was the 

hypothesis-generating process, the core of scientific research, tested but the hypothesis-

understanding process was also tested in this study. These two processes for the three groups 

were compared in terms of different standards such as region, signal intensity, and network. 
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Methodology 

 
Participants  

Thirty-six male right-handed, healthy volunteers participated in the fMRI experiment. All 

participants were separated into three distinct groups (12 participants per group). The first group 

consisted of general high school students (mean age 16.79; range 16 - 17; all 10
th
 graders), and 

the second group was comprised of science high school students (mean age 16.86; range 16 - 17; 

all 10
th
 graders). The last group consisted of biologists (mean age 39.08; range 36-42) all of 

whom had doctorate degrees (Ph. D) in biology and were involved in scientific research or 

employed at a university (e.g. full-time researcher or professor). Also, all the biologists were 

screened to ensure they were currently involved in research and were publishing and/or planned 

to publish their results.  

All participants had normal or corrected-to-normal visual acuity, no history of neurological, 

psychiatric or major medical illness, and were right-handed according to the Edinburgh 

handedness inventory (Oldfield, 1971). Each participant and their parents (for the student groups) 

gave informed consent prior to their inclusion in the experiment in accordance with the 

Declaration of Helsinki. The study was approved by the Ethics Committee of Korea National 

University of Education (KNUE).  

 

Behavioral data acquisition and analysis 

Both behavioral and fMRI data were analyzed in this study to investigate differences in brain 

functions connected to hypothesis-generating and hypothesis-understanding between scientists 

and high school students, both general and science. Two types of tasks investigated the 

behavioral patterns of participants in this study. The first measured response accuracy using a 

computer mouse and the second investigated scientific hypothesis generation skills using a HQ 

(hypothesis explanation quotient) questionnaire (Lee, 2009). Participants’ scientific hypothesis 

generation skill was tested twice before fMRI scanning sessions.  

To quantitatively measure scientific hypothesis generation skill on biological phenomenon, 

this study employed Kwon, Lee, and Jeong (2007)’s HQ equation: 

 (HQ: hypothesis explanation quotient, LE: levels of explican, 

TH: types of hypotheses, DL: explican’s degree of likeness, n: n
th
 explican). Detailed scoring 

criteria for each HQ term also followed those outlined in Kwon, Lee, and Jeong (2007). HQ 

scores were calculated for each questionnaire item. Additionally, for each participant, a mean HQ 

score was computed across questionnaire items. Then, for each hypothesis, HQ scores were 

analyzed according to the method proposed in Kwon, Lee, and Jeong (2007). HQ scores 

represented an average score for the eight generated scientific hypotheses on biological 

phenomena. A comparison of HQ scores before and after training program instruction was made 

to assess changes associated with hypothesis generation training.  

For this study, inter-coder reliability was calculated in accordance with Kappa’s formula. 

The measure, frequently used in numerous psychological studies, evaluates the coding scheme 

and coding procedure (van Someren, Barnard, & Sandberg, 1994). A Kappa score should be 

above 0.70 to ensure acceptable inter-coder reliability. The inter-coder reliability of this study 

was acceptable (Kappa = 0.84). Significant changes in accuracy and HQs were assessed 

separately using an analysis of variance (ANOVA) followed by a Scheffé post-hoc test. All 

behavioral data was analyzed using SPSS 12.0 for Windows (SPSS Inc., Chicago, IL, USA).  
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Development of fMRI experimental tasks  

The term “hypothesis” has a variety of different meanings in science, philosophy, and the philo-

sophy of science. Every scholar has different diverse categories of hypothesis definition (Jeong & 

Kwon, 2006). Therefore, this study limits the meaning of ‘hypothesis’ and ‘hypothesis-

generating’ to ‘hypothesis-generating by the abductive reasoning process’. Traditionally, two 

types of reasoning: induction and deduction are recognized in the logic of science. However, a 

long line of discussion has shown that another type of scientific reasoning called retroduction or 

abduction, in addition to induction and deduction, exists in scientific endeavors (Kwon, Jeong & 

Park, 2006).  

Abduction is the mental process of generating a hypothesis in which an explanation that is 

successful in one situation is borrowed and applied as a tentative explanation in a new situation 

(Hanson, 1958; Lawson, 1995; Kwon, Yang & Chung, 2000; Fisher, 2001). Also, previous stud-

ies have claimed hypotheses come, not from induction or deduction, but from prior knowledge 

and the creative process of abduction (Kwon, Jeong & Park, 2000; Lawson, 1995). Therefore, the 

term ‘hypothesis-generating’ in this study refers to the abductive thinking process of formulating 

a set of propositions proposed as tentative causal explanation for an observed scientific situation. 

This abductive hypothesis generation process presumably involves the reasoning procedures of 

exploring, combining, comparing, and selecting possible alternatives (Jeong & Kwon, 2006; 

Kwon, Yang & Chung, 2000; Kwon, Jeong & Park, 2006). Also, abductive hypothesis generation 

is regarded a learning strategy or thinking style in which one, individually, explores the cause 

(i.e. explican) for a question through self-regulation.  

The term ‘hypothesis-understanding’ in this study refers to the thinking process of receiving 

new causal knowledge from a set of specific samples through inference based on an expository 

explanation. In this process, reasoners accept new hypotheses as causal explanations in their cog-

nitive structure by way of temporal or logical order. Nevertheless, it does not explore suitable 

explican proposed by an individual as is done in the hypothesis-generating process (Kwon, Lee, 

Shin & Jeong, 2009; Lee & Kwon, 2008).  

To control and homogenize task difficulty and the content of biological hypothesis genera-

tion tasks used as fMRI stimuli, this study developed task items in accordance with the R&D 

process of Borg & Gall (1989). Initially, 80 task items were designed as stimuli. Then, a pilot test 

of the hypothesis-generating and hypothesis-understanding tasks was administered to a group of 

30 participants, none of whom participated in the actual experiment. After the pilot test, task 

items judged appropriate for usage in the actual experiment were selected and edited according to 

pilot test results. Validity and reliability of the task items were established by repeating the R&D 

process several times. In the end, 8 items were deemed unacceptable, 16 items were selected as 

pre-experiment practice tasks, and the remaining 28 items were used in the main experiment. In 

this study, participants partake in two separate fMRI scanning sessions: one for ‘hypothesis-

generating’ and a second for ‘hypothesis-understanding’. Employing the same phenomena in 

both sessions could contaminate participants’ thoughts. Hence, to prevent this memory effect 

within the study design, the study employed two parallel-form sessions with 28 task trials for 

each session. The parallel-form reliability was 0.92. Moreover, the study counterbalanced prob-

lems between subjects. 

 

F-MRI experimental task conditions and procedure  

The fMRI scanning paradigm consists of two types of task conditions: hypothesis-generating and 

hypothesis-understanding (Fig. 1). Each task condition was applied independently to each of the 

two scanning sessions: hypothesis-generating and hypothesis-understanding. Each participant 
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was scanned twice during hypothesis-generating and hypothesis-understanding, before and after 

the 3-month training program period.  

Scanning tasks utilized a blocked design. Each task starts with a blank slide for the dummy 

phase (12 sec.) followed by a notice slide (12 sec.). The notice slide announces the task type (e.g. 

‘hypothesis-generating’) to the participant. Then, the main task slide begins. Each session 

consists of 28 tasks (28 HG tasks and 28 HU tasks, a total 56 of tasks), and every task stimulus 

relates to biological phenomena, especially those which have causal relations. Also, each task 

consists of six slides. For hypothesis-generating tasks, the “cause” or first phenomenon is 

presented for 2 seconds followed by the second phenomenon, “effect” or its result for 2 seconds. 

The hypothesis-generating process by abductive reasoning is influenced by experience; in other 

words, prior knowledge (Kwon, Jeong & Park, 2006). That is to say, participants’ prior 

knowledge can either assist or interfere with hypothesis-generating. Hence, the cause is presented 

as a “lump” to prevent gaps among differences in participant experiences during the process of 

exploring explican and to make the tasks approachable. Next, a question mark is presented to 

participants for 3 seconds. It is at this time participants should actively generate individual 

hypotheses on the second phenomenon; that is, they should answer the following question, “Why 

does the effect appear?”  For example, for the case illustrated in figure 1, participants may 

generate a hypothesis like “Because dung is repeatedly rolled by a dung beetle’s hindlegs, it 

becomes ball-shaped.” A third phenomenon is then presented for 2 seconds. The slide shows the 

entire process (cause + effect) to participants. Next, a response slide is presented. At this time, 

participants should compare their hypotheses to the third phenomenon. If the hypotheses are in 

agreement, participants are asked to left-click the mouse button; otherwise, they are required to 

right-click the mouse button. At the end of a task, a white crisscross pattern is shown to 

participants for 12 seconds as a baseline stimulus. The participants are instructed to keep their 

eyes open at all times and fixate on the central cross to minimize eye movements.  

The data collected during the hypothesis-generating session was analyzed as a single block 

frame, [cause / effect / ? / cause + effect]. During data analysis, the ‘?’ slide phase was not 

extracted because it was considered a critical time point. The purpose of analysis was to examine 

whole neural networks at work during the hypothesis-generating process by abductive reasoning 

and compare them with those at work during hypothesis-understanding. In other words, it was 

neither relevant nor beneficial to only investigate a singular moment of causal or hypothetical 

explican detection. The fMRI scans, therefore, included the sub-steps of abductive reasoning. 

For hypothesis-understanding, tasks are presented in the reverse order in which they were 

presented for hypothesis-generating tasks. In other words, the order is ‘cause → process (cause + 

effect) → effect (result)’. For these tasks, participants are to passively understand presented bio-

logical phenomena in causal sequence. Mirroring the hypothesis-generating tasks, a response 

slide is presented. At this time, participants should check their state of understanding. If they 

have full understanding, they are asked to left-click the mouse button; otherwise, they are 

required to right-click the mouse button. Also, as in the hypothesis-generating tasks, at the end of 

each task, a white crisscross pattern slide is presented to participants for 12 seconds.  

The data for the hypothesis-understanding session tasks were also analyzed as a single 

block, [cause / cause + effect / effect / ?]. Data analysis, here too, did not extract the ‘?’ slide 

phase in order to examine whole neural networks at work during the hypothesis-understanding 

process and to compare them with those at work during hypothesis-generating. The fMRI images, 

therefore, included the whole logical process of reasoners’ causal knowledge acceptance.  
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Figure 1. Schematic representation of experimental design. Each scanning session for the two 

investigated cases of hypothesis-generating and hypothesis-understanding consisted of 28 tasks, a 

total of 56 tasks. In this figure, a representative trial is presented. See the text for a thorough ex-

planation. 

 

 

F-MRI image acquisition  

Anatomic T1 volume images and functional T2
*
-weighted magnetic resonance (MR) images 

were acquired with a 3.0T MR scanner (ISOL, KOREA) with standard head coil. Functional 

images were acquired using a T2
*
-weighted gradient-echo, echo planar pulse sequence (30 

continuous slices parallel to the anterior-posterior commissure [AC-PC] line covering the whole 

brain, repetition time [TR] = 3,000 ms, echo time [TE] = 35 ms, flip angle = 80 degree, field of 

view [FOV] = 220 X 220 mm
2
, matrix = 64 X 64, slice thickness = 5 mm). Immediately after the 

functional scanning, a high-resolution T1-weighted anatomic scan was acquired for each subject. 

 

Analyses of fMRI Images and data  

Image processing and statistical analysis were carried out using SPM2 (Wellcome Department of 

Cognitive Neurology, http://www.fil.ion.ucl.ac.uk/spm) implemented on MATLAB ver. 7.0 (The 

MathWorks, Natick, MA). Data from one subject were discarded due to the presence of artifacts 

in the functional images. Moreover, the first five volumes of each subject were discarded due to 

T1 equilibration effects. For each subject, all volumes were spatially realigned to the first volume 

of the first session to correct for between-scan motion, and a mean image from the realigned vo-

lumes was created. This image was spatially normalized to the Montreal Neurological Institute 

(MNI) brain template (Evans et al., 1993). The derived spatial transformation was then applied to 

the realigned T2
*
-weighted volumes, which after normalization were resampled. All functional 

volumes were then spatially smoothed with an 8-mm full-width half-maximum (FWHM) 

isotropic Gaussian kernel to compensate for residual between-subject variability after spatial 

normalization (to allow for comparisons across subjects) and to permit application of Gaussian 

random field theory for corrected statistical inference (Worsley & Friston, 1995). The resulting 

time series across each voxel was then high-pass filtered with an upper cut-off of 128 seconds 

using cosine functions to remove section-specific low-frequency drifts in blood oxygen level-

dependent (BOLD) signals.  

Statistical maps of basic activation patterns for both the hypothesis-generating and 

hypothesis-understanding tasks, minus the baselines, were first computed. Data were analyzed 
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using a random-effect model to generalize results over the population from which subjects were 

extracted (Friston, Holmes, & Worsley, 1999). The random-effect model was implemented using 

a two stage process. At the first level, for each subject, condition effects at each voxel were 

estimated according to the general linear model (GLM) as implemented in SPM 2 (Friston et al., 

1995) and regionally specific condition effects were evaluated using linear contrasts to produce a 

contrast image. At the second level, the resulting contrast images from all subjects were entered 

into a single sample t test to assess the population mean effect. The entire process produced a 

statistical parametric map of the t statistics for each comparison of interest (hypothesis-generating 

– baseline and hypothesis-understanding – baseline) for each voxel. Maxima were reported in 

MNI stereotaxic coordinates for foci exceeding the highest threshold of P < 0.001, corrected for 

multiple comparisons. To avoid a false positive, only clusters bigger than 20 voxels were 

considered (Forman et al., 1995). 

To investigate the cerebral activations preferentially evoked by the two learning strategy 

conditions (hypothesis-generating and hypothesis-understanding), direct statistical comparisons 

between the two tasks were computed at the second level (random effect). In order to accomplish 

this, a paired t-test analysis on individual subjects’ contrast images obtained from the first level 

was used (P > 0.001 corrected). The location of foci in terms of Brodmann areas was determined 

using the nomenclature given by Talairach and Tournoux (1988) after correction for differences 

between the MNI and Talairach coordinate systems by means of a nonlinear transformation (see 

http://www.mrc-cbu.cam.ac.uk/~matthew/abstracts/MNITal/mni2tal. html).  

 

Region-of-interest (ROI) analysis and hypothetical connectivity construction  

All participants showed task-related brain activities, identified by contrasting the task types 

(hypothesis-generating and hypothesis-understanding) with the fixation as a control condition, in 

the frontal, parietal, temporal and occipital cortical regions and several sub-lobar regions. In this 

study, ROIs (regions of interest) were selected from commonly activated regions among genera-

ting and understanding groups during the same thinking conditions (Lee, 2009; Lee & Kwon, 

2011). The regions were confirmed by the counter cognitive substrate method [(hypothesis-

generating - baseline) - (hypothesis-understanding - baseline)] (Lee, 2009; Lee & Kwon, 2011). 

These activated regions were analyzed as to how connectivity changed across the conditions of 

hypothesis-generating and hypothesis-understanding using ROIs, which were adopted from a 

previous study (Lee, 2009; Lee & Kwon, 2011). ROIs were selected after analyzing significantly 

activated task-related brain regions when hypothesis-generating and hypothesis-understanding 

(Table 1) were compared. In a recent study, Lee (2009) reported that hypothesis-generating and 

hypothesis-understanding showed dissociative patterns at the brain network level. Lee also found 

two specialized core networks during hypothesis-generating and hypothesis-understanding. 

According to Lee & Kwon’s study, the brain activation network of hypothesis-generating 

consisted of seven nodes, and the brain activation network of hypothesis-understanding consisted 

of eight nodes. Therefore, this study pre-selected these 15 ROIs (seven HG ROIs and eight HU 

ROIs). 

The 7 ROIs adopted in this study were the left middle frontal gyrus (Fugelsang and Dunbar 

2005; Kuperberg et al. 2006; Kwon et al. 2009; Lee 2009; Lee & Kwon, 2011; Parris et al. 2009; 

Satpute et al. 2005), the left putamen (Flaherty 2005; Lee et al. 2006; Lee 2009; Lee & Kwon, 

2011), the left parahippocampal gyrus (Baird and Fugelsang 2004; Fugelsang and Dunbar 2005; 

Lee 2009; Lee & Kwon, 2011), the left superior temporal gyrus (Flaherty 2005; Kwon et al. 

2007; Lee 2009; Lee & Kwon, 2011; Mason and Just 2004; Virtue et al. 2006; Qiu et al. 2008), 

the left middle temporal gyrus (Kuperberg et al. 2006; Lee 2009; Lee & Kwon, 2011; Virtue et 

al. 2006), the left middle occipital gyrus (Fugelsang and Dunbar 2005; Kuperberg et al. 2006; 
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Lee 2009; Lee & Kwon, 2011; Kwon et al. 2007), and the right lingual gyrus (Fugelsang and 

Dunbar 2005; Lee et al. 2006; Lee 2009; Lee & Kwon, 2011) for hypothesis-generating. In addi-

tion, for hypothesis-understanding, this study adopted 8 ROIs: the left superior parietal lobule 

(Fugelsang et al.  2005; Lee, 2009; Lee & Kwon, 2011), the left corpus callosum (Lee 2009; Lee 

& Kwon, 2011), the right corpus callosum (Lee 2009; Lee & Kwon, 2011), the left precuneus 

(Fugelsang et al. 2005; Lee 2009; Lee & Kwon, 2011), the right precuneus (Lee 2009; Lee & 

Kwon, 2011), the left lingual gyrus (Fugelsang et al. 2005; Lee 2009; Lee & Kwon, 2011), the 

right lingual gyrus (Fugelsang et al. 2005; Lee 2009), and the right middle frontal gyrus 

(Fugelsang et al. 2005; Lee 2009; Lee & Kwon, 2011). All 15 ROIs were used as a network node 

(i.e. seed regions) to analyze correlations among the functional connectivity structure. 

 

 

 
 

 

Figure 2. Graphical renderings of the regions of interest (ROIs) (Adopted from Lee & Kwon, 

2011). ROIs were selected after a direct comparison of [hypothesis-generating versus hypothesis-

understanding (red)] and [hypothesis-understanding versus hypothesis-generating (green)] in all 

participants (see Table 1 for details). 

 

 

Functional connectivity analysis  

To compute the measure of functional connectivity, BOLD signals of activated voxels were ex-

tracted from selected ROIs. For each participant, a mean time-course was computed across acti-

vated voxels for each ROI. A correlation coefficient was then calculated between the time-



Brain networks of scientist and students     91 
 

 

 

 

courses of pairs of ROIs (Friston, Frith, Liddle, & Frackowiak, 1993; Koshino et al., 2005; Lee, 

Harrison, & Mechelli, 2003). 

 

Table 1. Regions of interest and their Talairach coordinates 

Lobe Region of activation BA & Side 
Talairach coordinates 

x y z 

 

Hypothesis-generating 

      

Frontal Middle frontal gyrus 9 L -30 26 26 

Temporal Superior temporal gyrus 39 L -46 -49 15 

 Middle temporal gyrus 22 L -48 -49 1 

Limbic Parahippocampal gyrus 28 L -18 -12 -9 

Occipital Middle occipital gyrus 19 L -38 -66 11 

 Lingual gyrus 18 R 8 -80 -3 

Sub-lobar Putamen L -24 -1 9 

      

Hypothesis-understanding 

      

Frontal Middle frontal gyrus 9 R 46 14 25 

Parietal Superior parietal lobule 7 L -28 -62 45 

 Pecuneus 7 L -26 -68 40 

  7 R 30 -70 42 

Occipital Lingual gyrus 18 L -4 -80 -6 

  18 R 8 -80 -3 

Sub-lobar Corpus callosum R 10 -13 21 

  L -16 -28 22 

 

 

To investigate total functional interconnections of participants’ brain networks more 

effectively, this study utilized the connectivity coefficient (CC) concept suggested by 

Schmithorst and Holland (2006). A connectivity coefficient (CC) (CC: the weighted sum of 

pairwise covariances between regions, which can be expressed as the weighted sum of signed 

coefficients of determination between time courses from each pair of regions) can be calculated 

as:  

[CCj : connectivity coefficient of the j
th
 participant, Wi (Weighted): the 

i
th
 weighting of each pairwise connection, R: correlation coefficient)] 

Since a CC level provides more information than a single pairwise correlation coefficient, it 

is often used in analyses of functional connectivity because functionally connected networks may 

involve more than two interconnected regions (Schmithorst & Holland, 2006). In this study, a 3-

group comparison (Fig. 3): general high school students, science high school students, and 

biologists, was conducted on the hypothetical network models stipulated in Lee (2009).  
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Figure 3. Hypothetical network models for (A) hypothesis-generating and (B) hypothesis-

understanding (Adopted from Lee & Kwon, 2011). 

 

 

Results 

 

Behavioral Results 

 

Two types of behavioral results were obtained from participants in this study. The first type of 

data pertained to trial accuracy (percentage of correct responses), and the second type of data was 

participants’ HQ scores calculated from post-scan questionnaires.  

 

(a) Accuracy  

 

Since significant accuracy difference was found in the hypothesis-generating process among the 

three groups (Table 2), researchers conducted Scheffé’s post hoc analysis. This analysis also 

revealed statistically significant difference among three groups during hypothesis-generating. 

Although there was no significant difference in accuracy for the hypothesis-understanding pro-

cess among the three groups, Scheffé’s post hoc analysis revealed statistically significant 

difference in hypothesis-understanding among the three groups (Table 2).  

 

 

Table 2. Hypothesis-generating and hypothesis-understanding accuracy (%) 
 

Learning style 

Group 

Hypothesis-

generating 
F P 

Hypothesis-

understanding 
F P 

General-HS 95.31 ± 0.71a 

4.692 0.015 

98.66 ± 0.45 

2.2 0.127 Science-HS 98.81 ± 0.51b 100.00 ± 0.00 

Biologists 99.70 ± 0.29 ab 100.00 ± 0.00 

Note: Mean± S.D. (Standard deviation); different letters (a, b) denote significant difference by post hoc of 

Scheffe (p < 0.05) 
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(b) Hypothesis explanation quotient  

 

Significant HQ score difference was found among the three groups. Scheffé’s post hoc analysis 

also revealed statistically significant HQ score difference among the three groups (Table 3).   

 

Table 3. Hypothesis-generating and hypothesis-understanding HQ scores 

 

Group HQ scores F P 

General-HS 3.86 ± 1.58a 

363.58 0.00 Science-HS 11.61 ± 3.42b 

Biologists 31.41 ± 10.55c 

Note: Mean± S.D. (Standard deviation); different letters (a, b, c) denote significant difference by post 

hoc of Scheffe (p < 0.05) 

 

FMRI results 

 

(a) The hypothesis-generating functional connectivity model  

 

A functional connectivity level comparison among the 3 groups was conducted on pre-selected 

ROIs.  ANOVA results for the functional connectivity pairs of ROIs are shown in Fig. 4. The 

functional connectivity data revealed two major findings. First, there was significant difference in 

hypothesis-generating connectivity among the three groups. Nearly every correlation coefficient 

(R) for each ROI pairing was significantly different among the three groups. The four pairs of 

significance were: MFG (L) – Put (L) [F(3, 35) = 27.898, P < 0.001], ParaH (L) – STG (L) [F(3, 

35) = 13.969, P < 0.001], STG (L) – MTG (L) [F(3, 35) = 19.089, P < 0.001], and LiG (R) – Put 

(L) [F(3, 35) = 7.409, P = 0.002]. When researchers conducted Scheffe’s post hoc analysis, sta-

tistically significant difference was also found among these pairings for the three groups during 

hypothesis-generating.   

Second, findings not only found significant difference in correlation coefficients (R), the 

weightings (W) of ROI pairs were also found to be significantly different among the three groups 

during the hypothesis-generating process. The six pairs showing significant difference were: 

MFG (L) – Put (L) [F(3, 35) = 42.865, P < 0.001], Put (L) – ParaH (L) [F(3, 35) = 14.437, P < 

0.001], ParaH (L) – STG (L) [F(3, 35) = 10.725, P < 0.001], STG (L) – MTG (L) [F(3, 35) = 

34.897, P < 0.001], MTG (L) – MOG (L) [F(3, 35) = 7.879, P = 0.002], and LiG (R) – Put (L) 

[F(3, 35) = 8.515, P = 0.001].  Scheffé’s post hoc analysis confirmed statistical difference existed 

among the three groups during hypothesis-generating.   

Figure 4 illustrates these significant differences and eases the understanding of discrepancies 

during the hypothesis-generating process for the 3 different groups.  
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Figure 4. Significant functional connectivity networks for selected ROIs for the three groups 

during hypothesis-generating. The acronyms in circles represent the anatomical names of ROIs. 

Functional connectivity networks are: A) general high school students, B) science high school 

students, and C) biologists. 

 

 

(b) The hypothesis-understanding functional connectivity model 

A functional connectivity level 3-group comparison was conducted on pre-selected ROIs. ANO-

VA results for the functional connectivity pairs of ROIs are shown in Fig. 5. Functional connec-

tivity data revealed 2 major findings. First, there was generally no significant difference in con-

nectivity for the hypothesis-understanding process among the three groups. Although the correla-

tion coefficients (R) of three ROI pairs were significantly different among three groups, all other 

pairings showed no significant difference.  One of the three pairings that showed significant dif-

ference was the CoC (L) – CoC (R) [F (3, 35) = 7.991, P = 0.001] pairing. Scheffé’s post hoc 

analysis also indicated that this pairing had statistical difference among the three groups for hy-

pothesis-understanding.  

There was no significant difference found among the weightings (W) of ROI pairs during the 

hypothesis-understanding process among the three groups. Likewise, there was no statistically 

significance difference among the three groups according to Scheffé’s post hoc analysis 
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conducted on these pairs. Figure 5 helps ease the understanding of discrepancies during the 

hypothesis-understanding process among the 3 different groups.  

 

 

 

 
 

Figure 5. Significant functional connectivity networks for selected ROIs for the three groups 

during hypothesis-generating. The acronyms in circles represent the anatomical names of ROIs. 

Functional connectivity networks are: A) general high school students, B) science high school 

students, and C) biologists. 

 

(c) Connectivity coefficient differences  

A connectivity coefficient (CC) comparison was conducted on network models for the three 

groups. Two major findings were found. First, there was significant CC value difference for the 

hypothesis-generating process among the three groups (Fig. 6A). Scheffé’s post hoc analysis also 

revealed statistically significant difference among the three groups for the hypothesis-generating 

process. The biologist group had the highest CC values among groups, and the science high 

school student group showed significantly higher CC values than the general high school student 
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group. However, the CC values of the science high school student group were significantly lower 

than those of the biologists’ (Fig. 6A). 

There was no significant difference in the CC values for the hypothesis-understanding pro-

cess among the three groups (Fig. 6B). Likewise, there was no significance difference found 

among the three groups from Scheffé post hoc analysis (Fig. 6B). 

 

 

 
 

Figure 6. Plots of connectivity coefficients (CC) during hypothesis-generating (A) and 

hypothesis-understanding (B) from the functional connectivity networks of the three groups. Er-

ror bars represent the standard error of mean, and the different letters (a, b, c) denote significant 

difference by post hoc of Scheffe (p < 0.05) 

 

(d) Correlations between functional connectivity and hypothesis explanation quotient  

This study also conducted an investigation of correlations between CC values from the network 

models of the three groups (Fig. 7) and behavioral results (HQ scores) (Table 3). The investiga-

tion was carried out solely on the hypothesis-generating process because only this process 

showed reliable changes in functional connectivity and HQ scores among the three groups that 

participated in this study. That is to say, hypothesis-understanding findings did not show reliable 

changes. Therefore, research questions regarding correlations are specific to the effect on the 

hypothesis-generating process and the relationship between training-induced changes and hy-

pothesis explanation quotients (HQ). 

This study found significant correlation between HQ scores and changes in CC values (R
2
 = 

0.67, P = 0.014) during the hypothesis-generating process. A scatter plot of CC values, summa-

rized in Fig. 6 as a function of individual HQ scores for the general high school students, science 

high school students, and biologists, is displayed in Fig. 7. In addition, this study found signifi-

cant correlation for the general high school student group (r = 0.61, P = 0.037), science high 

school student group (r = 0.58, P = 0.049), and the biologist group (r = 0.62, P = 0.033).  
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Figure 7. Scatter-plots and trend-lines of correlations between HQ scores from the three 

participating groups in this study along with their respective CC values. The blue circles 

represent general high school students, the red circles represent science high school students, and 

the green circles represent the biologists. 

 

 

Discussion 

This study explored the brain activity of healthy participants using fMRI in order to find 

differences in the brain networks of biologists and general and science high school students 

during the generating and understanding of hypotheses. The study also looked at whether 

differences are related to differences in functional connectivity in neural networks.  

 

Neural connectivity differences between biologists and high school students 

According to results, there are several differences in activation patterns between biologists and 

the high school study participants. Activation of the mesencephalon is unique to the hypothesis 

generation process of science high school students and biologists. Prior research has shown the 

mesencephalon to be a pivotal center of the mesolimbic reward system and the doparminergic 

pathway (Spanagel & Weiss, 1999). There is also significant difference in the MFG-Put connec-

tivity pair. The biologist group has the highest interconnection record for this connectivity pair 

among the three groups (Fig. 4). This connectivity pair, also called the fronto-striatal pathway, is 

known as the connection means between the frontal cortex and the mesolimbic system (Cohen, 

Schoene-Bake, Elger, & Weber, 2009). In the past, this network connection was thought to only 
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respond to an external reward (Spanagel & Weiss, 1999), but Mizuno et al. (2008) recently re-

ported that the system is also closely related to the internal reward system and the academic 

learning motivation of an individual.  

Just as prior research has shown, the biologists in this study generated knowledge and exam-

ined it through a repetitive process of inquiry (Dunbar, 2000; Kwon & Lee, 2007; Thargard, 

1998). Noteworthy, the science high school students partook in more scientific experimentation 

than any other group (Kwon, Lee, & Jeong, 2007). Since mesencephalon activation and high 

putamen activation are only observed in these two groups, it can be said these two groups have a 

well-operating internal reward system. According to several recent studies, the academic reward 

system, an internal reward system, activates the putamen, which is representative of the external 

reward system. Activation intensities indicate both reward systems are very similar (Mizuno et 

al., 2005). Because the academic reward system helps form a connection between positive corre-

lations of academic achievement motivation, activation in this region can be viewed as the core 

neural substrate for motivation. Evidence from this study illustrates biologists’ relatively higher 

academic achievement motivation for biological experiments than the other two groups.  

Cohen, Schoene-Bake, Elger, and Weber (2009) suggest that personality characteristics are 

linked to dissociable connectivity streams in the human brain. They reported that the strength of 

connectivity between the fronto-striatal network (tracts between prefrontal cortex and the stria-

tum) of a novelty seeker is greater than a comfort seeker (i.e. reward dependence)’s connectivity 

strength. In our study, the science high school students and biologists’ MFG-Put connectivity 

strengths are stronger than general high school students’ (Fig. 4). This is consistent with Cohen et 

al.’s study, which claims a novelty seeker pursues a ‘reward’ from new experiences (e.g. buying 

the latest software-laden cell phone – ‘smart phone’) (Cohen, Schoene-Bake, Elger, & Weber, 

2009). Emerging evidence suggests that both biologists and science high school students possess 

this novelty seeking characteristic as it pertains to scientific inquiry. They seem to sense a ‘re-

ward’ from strange new phenomenon, an experiment, a challenging problem situation, a new 

result, or theory construction.  

Regional connectivity is responsible for differences in functional connectivity during the 

hypothesis-generating process, differences that appear in every pairing in the hypothetical model 

network except the MOG-LiG pairing. Moreover, all pairings show differences in correlation 

coefficients and weightings. Figure 4 shows the whole network for each group. In terms of func-

tional connectivity, the biologist group has the highest pairwise connection correlation coefficient 

and weighting among the three groups while the general high school student group shows the 

lowest. 

Because Kwon, Lee, Shin, and Jeong (2009) analyzed only simple regional functions and 

cognitive skills, they focused on the use of signal intensity for two particular regions. As men-

tioned earlier, it is not enough to simply explain complex cognitive functions such as hypothesis-

generating and problem-solving. For example, Koshino et al. (2005) reported that autism subjects 

differed from normal subjects but only in terms of an investigation of interregional functional 

connectivity; they did not examine other regional activities. In that study, the autism group 

showed lower functional connectivity, which implies their mutual fluidity does not guarantee 

formation of a smooth application or transformation regardless of the type of knowledge or in-

formation they produce. In a study by Jin, Kwon, Jeong, Kwon, and Shin (2006a; 2006b) that 

compared a group of normal children to a group of gifted children findings revealed the two 

groups’ brain networks work differently when generating biological hypotheses. After investigat-

ing data from EEG readings through mutual information analysis, Jin et al. found that difference 

lies within information transmissions. To summarize, there is a difference in how the human 

brain processes information. A hypothesis requires an individual to have very complex and high 



Brain networks of scientist and students     99 
 

 

 

 

intelligence. Hence, it is inappropriate to explain the entire hypothesis-generating process after 

examination of one particular region or even a couple of pairwise connections (Jin, Kwon, Jeong, 

Kwon, & Shin, 2006a). This study attempted to prove the existence of differences among groups 

using CC values, which indicate whole network fluidity as well as relativity of time. Results pro-

vide evidence that difference in CC values do indeed exist; science high school students and bi-

ologists differ significantly from general high school students. Also, biologists score highest 

among the three groups (Fig. 6A). This study also shows that when it comes to generating a hy-

pothesis through the organizing of various kinds of information, mutual connection among neces-

sary regions is higher in biologists than the other two groups. According to regression analysis, 

differences in observable hypothesis-generating skills can be explained by various differences in 

the level of the network such as the CC value (R
2
 = 0.67, P = 0.014; Fig. 7).   

Emerging evidence suggests that the high CC values of the biologist group are 

representative of excellent information fluidity in biologists’ brain networks. Also, science high 

school students show higher information processing skills than the other groups. For them, brain 

reasoning on new knowledge (e.g. a biological hypothesis) does not appear instantly, but 

gradually through a re-organization of prior knowledge by an abductive inference procedure 

(Hanson, 1958; Kwon, Jeong, & Park, 2006). Therefore, understanding sub-knowledge and in-

formation is very important for the brain to produce new knowledge. To sum up, for higher-

cognitive skills such as hypothesis-generating, the limiting factor is not activation of each brain 

region but instead interregional correlationships (i.e. network fluidity).  

While there are clear group differences in functional connectivity for the hypothesis-

generating process, there are no significant group differences in either connectivity or weighting 

for the hypothesis-understanding process, except in three connected pairs (Fig. 5). Since it would 

be difficult to understand the entire process by solely examining particular regions or even a cou-

ple of connected pairs, this study focuses on group differences using CC values (Schmithorst & 

Holland, 2006), which indicate whole network fluidity and temporal connectivity. In terms of CC 

values for the hypothesis-understanding process, there was no significant difference among 

groups (Fig. 6B). Therefore, it has been shown that passive hypothesis-understanding was used 

the same pattern of neural network in all three groups, as like the case of hypothesis-generating 

which was used the same pattern of neural network in all three groups. In other words, the reason 

students in both student groups are unable to conduct an experiment as well as the biologists are 

not because biologists have greater hypothesis-understanding skills than students, but because 

biologists have greater hypothesis-generating skills than high school students. 

Results of this study suggest several major differences exist in the brain functions of 

scientists and high school students during the processes of hypothesis-generating and hypothesis-

understanding. First, biologists have a stronger connected fronto-striatal pathway, which connects 

to the midbrain reward system and prefrontal cortex. Second, biologists have higher CC values 

than high school students during the hypothesis-generating process. Third, functional connectivi-

ty network differences during hypothesis-understanding between scientists and the two high 

school student groups are not statistically significant. These three findings, taken together, 

suggest differences between biologists and high schoolers stem from motivation, or the internal 

reward system, and a creative mindset aimed at generating new knowledge during scientific 

inquiry on natural phenomena. In particular, effective synchronizing of multiple brain regions as 

a functional neural network when generating new, creative knowledge appears to be the key to 

the superior inquiry skills of biologists. In other words, as shown in a study by Kwon & Lee 

(2007), biologists have neither memorized vast amounts of knowledge nor do they possess the 

ability to quickly understand principles suggested by others. This finding has enormous 

ramifications for the science education field.  
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Correlation differences between CC values and HQ scores 

This study investigated the relation between ‘CC’ values, the connectivity efficiency of a neural 

network, and HQ scores calculated from paper and pencil tests. According to results, there is 

significant relation between CC values and HQ scores for both scientists and high schoolers. 

Figure 6 shows biologists, science high school students, and general high school students clus-

tered according to their respective groups on a scatter diagram. The scatter diagram indicates that 

functional synchronization of a neural network can discriminate groups as well as individuals’ 

skillfulness at scientific inquiry such as hypothesis-generating through traditional methods (e.g., 

paper and pencil tests).  

Although general and science high school students have separate clusters, taken as a whole, 

the difference between scientists and high schoolers cannot be ignored.  In this study, scientists 

and high school students are separated at a CC value of 8 and a HQ score of 25; these values 

form the cutting line between the two groups (Fig. 7). Findings, therefore, indicate that the meas-

ure of connectivity efficiency (synchronization) of a neural network could be an effectual alterna-

tive approach to determining similarity between students’ brains and biologists’. Particularly, this 

study, consistent with previous studies, measures cognitive skills through brain imaging (Chen et 

al., 2007; Choi et al., 2008; Eckert et al., 2008; Geake & Hansen, 2005; Reis et al., 2007; Song et 

al., 2008).  

 

Educational implications  

Research focused on functional connectivity network differences among groups: general high 

school students, science high school students, and biologists, during hypothesis-generating and 

hypothesis-understanding. If it were possible to somehow alter students’ brain network patterns 

so that they followed the patterns of biologists’, significant change would be felt in the science 

education field. Most previous studies on brain plasticity concentrated on finding alternative 

brain functions after damage to or increased activation in the brain; in particular, regions affected 

by training. However, this study proves that an increase in the cognitive function of high human 

intelligence regions cannot be produced by merely aiding activation of a particular region. 

Full comprehension of the functionally synchronized brain activation network of a biologist 

has numerous implications for science education. First, teachers and researchers could verify the 

development of students’ scientific inquiry skill throughout a science class at the brain level, 

which would enable teachers to diagnose problematic areas quickly. Especially, full 

comprehension would provide educators the opportunity to objectively and quantitatively 

evaluate science high schoolers, who are studying science in the hope of becoming future 

scientists, in terms of their resemblance to actual scientists. Second, educators and researchers 

could develop brain-compatible textbooks or curricula that help students alter their brains in such 

a matter that they more closely resemble scientists’ brains by facilitating the investigation of neu-

ral network differences between scientists and high school students. Third, educators and resear-

chers would be able to determine a student’s potential for scientific inquiry using the brain ima-

ging technique and compare student brain networks to scientist brain networks during creative 

knowledge-generating. Most scientific inquiry skills have been evaluated via paper and pencil 

tests in the class. This traditional approach can overlook lower achieving students with weak or 

non-existent narrative writing skills. These students will not show a superior scientific inquiry 

skill and could be discounted by teachers. Findings on neural network differences between 

biologists and high school students from this study, if applied in the science education field, 
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could improve the aforementioned students’ scientific inquiry skills. Through more detailed and 

practical instruction, these students would be able to utilize their scientific inquiry skills.  

 

 

Limitations  

Since this is the first study ever to have investigated high school students and biologists’ learning 

strategies during the acts of generating and understanding a hypothesis, which are abductive 

inquiry processes, at the neural network level, it has several limitations regarding interpretation. 

Given that all participants were male, results cannot be generalized across the whole human re-

cognition process. Furthermore, because only the functional connectivity network was analyzed, 

more concrete details about such issues as the direction neural network pathways follow still need 

to be addressed in later studies. Also, it is noted that several findings including brain regions and 

lateralization were already discussed in previous studies. However, this study focused on 

biologists. A generalization to all scientists would need additional research. Finally, given that 

this study only investigated the hypothesis-generating and hypothesis-understanding processes of 

the scientific reasoning process, this study does not claim to explain differences between genera-

ting and understanding learning strategies in all areas of the scientific inquiry process at the brain 

level. 

 

 

Future research 

This study is unique in that two different means of inferring causality in an individual’s brain, 

hypothesis generation and hypothesis understanding, were found at the same time. The study 

leads the way for more related studies on the existence of similar brain network systems in 

female brains, and more details on aspects such as the direction neural network pathways follow 

and change in cortex thickness during hypotheses processes should be researched in future stu-

dies. Also, future studies need to determine the possibility of maximizing student brain activity 

and network fluidity related to scientific inquiry through constant training. 
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Bilim adamlarının beyin ağı, onların hipotez üretmedeki üstünlüklerinin sebebi 

olabilir mi? 
 

Bilim adamlarının bir yaratıcı düşünce üretirken kullandıkları üstün kabiliyetin kökeni ne-

reden gelmektedir? Bilim adamları, genel akademik lise öğrencileri ve fen lisesi öğrencileri 

arasındaki bir biyoloji hipotezini üretirken hangi farklı beyin fonksiyonları aktive edilmek-

tedir? Bu soruların beyin düzeyinde açıklamalarını ortaya çıkarmak amacıyla bu makalede 

genel ve fen lisesi öğrencileri ve biyologlar arasındaki sinirsel bağ farkı fMRI tekniğini kul-

lanarak hipotez üretimi ve hipotezi anlama esnasında araştırılmıştır. Araştırmacılar biri hi-

potez üretimi diğeri de hipotez anlaması için olmak üzere iki set görev örneği tasarladılar. 

Otuz altı sağlıklı katılımcıya (her grupta on iki kişi olmak üzere)  hipotez üretimi ve anla-

ması görevleri verildi. Sonuçlar, hipotez üretmede üstün yetenekleri olduğu sanılan biyo-

loglar grubu için işlevsel bağlantılar için kuvvetli ara bağlantıları gösterdi. Bu grupta aynı 

zamanda ön-stritial yol için belgelenmiş ön kabuk ve mezolimbik sistem arasında anlamlı 

işlevsel bağlantı bulunmuştur. İlaveten, biyologlar grubu diğer işlevsel bağlantılarda hipo-

tez üretme ile ilişkili olduğu bilinen daha yüksek ara bağlantılar kayıt etmişlerdir. Tümü 

dikkate alındığında gruplar arasındaki hipotez üretme becerilerindeki farkın ağ akışkanlığı 

ile ilişkili işlevsel bağlantının ara bağlantıları ile birlikte belli bölgelerin aktivasyonundan 

kaynaklandığı sonucuna ulaşılabilir. Özellikle, biyologların hipotez üretmedeki üstün bece-

rileri işlevsel bağlantının kuvvetlenmiş ara bağlantılarından kaynaklanmaktadır.  

 

Anahtar kavramlar: Lise öğrencisi, biyolog, işlevsel beyin bağlantısı, hipotez üretme, İş-

levsel magnetik rözenans görüntüleme (fMRI) 

 


