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INTRODUCTION

What is a model?

In a general sense, a model is a representation 
of a phenomenon, an object, or idea (Gilbert, 2000). In 
science, a model is the outcome of representing an 
object, phenomenon or idea (the target) with a more 
familiar one (the source) (Tregidgo & Ratcliffe, 2000). 
For example, one model of the structure of an atom 
(target) is the arrangement of planets orbiting the Sun 
(source) (Tregidgo & Ratcliffe, 2000). 

The model can only relate to some properties 
of the target. Some aspects of the target must be 
excluded from the model (Driel & Verloop, 1999). For 
example, the solar system model of the atom models the 
nucleus surrounded by electrons but excludes the 
delocalization of electrons, among other aspects. With 
respect to physics, Hestenes (1996) describes a model as 
a representation of structure in a physical system and/or 
its properties. The system may consist of one or more 
material objects. A model refers to an individual system, 
though that individual may be an exemplar for a whole 
class of similar things.

Models in Science Education

There are different types of models in science 
education. To categorize them, we should look into 
what makes them be considered different. For this 
reason, we should understand the difference between 
conceptual and mental models. Conceptual models are 
devised as tools for the understanding or teaching of 
systems. In addition to this, conceptual models are 
external representations--socially constructed and 
shared--which are precise, complete and consistent with 
the shared scientific knowledge specially created to 
facilitate the comprehension or the teaching of the 

systems in the world (Greace & Moreira, 2000). On the 
other hand, mental models are what people really have 
in their heads and what guides their use of things 
(Norman, 1983). Buckley et al. (2004) also viewed 
mental models as internal, cognitive representations.

Based on the literature, conceptual models 
include mathematical models, computer models, and 
physical models which are discussed in the following 
sections. In addition to these models, there is another 
model called “physics model” by the physics- education 
community. Physics models will be discussed later.

Categories of Models

In this section, I will discuss mental models, 
conceptual models, and physics models respectively. 
Conceptual models are mathematical models, computer 
models, and physical models.

Mental Models

Mental models are psychological 
representations of real or imaginary situations. They 
occur in a person’s mind as that person perceives and 
conceptualizes the situations happening in the world 
(Franco & Colinvaux, 2000). Norman (1983) indicates 
that mental models are related to what people have in 
their heads and what guides them using these things in 
their minds. In order to understand mental models, their 
characteristics should be considered.  

Mental models have a variety of features 
(Franco & Colinvaux, 2000). These are:

1) Mental models are generative.  
2) Mental models involve tacit knowledge.
3) Mental models are synthetic
4) Mental models are restricted by world-view.

Before explaining each of these features, one 
example regarding mental models from Vosniadou and 
Brewer’s (1992) study, which probes elementary school 
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students’ understanding of the Earth, its shape, and the 
regions where people live, can be helpful for 
understanding mental models. In the study, students 
were asked some questions to find out their mental 
models of the Earth, its shape, and the regions where 
people live. During these interviews with students, they 
were also asked to use drawings. Some of the questions 
were “what is the shape of the Earth? If you were to 
walk for many days in a straight line where would you 
end up?” To answer these questions, students needed to 
refer their previous experience and knowledge to create 
their mental models. 
According to the results of their study, various mental 
models were found as shown in Figure 1. 

 The spherical Earth model: The earth is a sphere with 
people living all around it on the outside.

 The flattened sphere model: The earth is a sphere but 
flattened at the poles, or a thick pancake. 

 The hollow sphere model: The earth is a hollow sphere 
with people living on flat ground inside it or it is made 
of two hemispheres, the lower one on which people live 
and the upper one with the sky like a dome.

 The dual Earth model: This includes two earths, a 
round one up in the sky and a flat, solid and supported 
earth--the ground where people live.

 The disc Earth model: The earth presents same features 
as in the rectangular earth model; only difference is that 
the earth is shaped like a disc.

 The rectangular Earth model: The earth appears as a 
flat, solid, supported object shaped like a rectangle.

I will now go back to describing the features of 
mental models using these children’s models as 
examples.

1) Mental models are generative (Franco & 
Colinvaux, 2000): This means that people or students 
can produce new information and make predictions 
while they are using mental models. For example, in 
Vosniadou and Brewer’s study, they asked questions 
such as “if you walked for many days in a straight line, 
where would you end up? Is there an end or an edge to 
the earth?” When students said “yes” for the latter 
question, the asked further questions such as “can you 
fall off that end or edge?  Where would you fall?” These 
questions make students become creative because they 
cannot observe these phenomena. According to 
students’ earth models, for example, the disc, the 
rectangular, and the dual earth models show that earth 
has an edge or end from which people can fall off. Also,
the hollow sphere model has an edge, however people 
live inside, and it is not possible for people to fall off 
(Vosniadou & Brewer, 1992). 

2) Mental models involve tacit knowledge 
(Franco & Colinvaux, 2000): The person who uses a 
mental model is not completely aware of some aspects 
of his or her mental models. In general, students have 
some presuppositions about physical or any other 
phenomena. These are really implicit. They are not 
conscious and people do not think about them, but 
rather they use them for reasoning. One example will 
explain this aspect of mental models. From Vosniadou 
and Brewer’s study (1994), in the disc and rectangular 
models of earth, students have presuppositions that the 
ground is flat. This presupposition is implicit, but it can 
be made explicit through their drawings.

3) Mental models are synthetic (Franco & 
Colinvaux, 2000): Mental models are simplified 
representations of the target system which can be a 
phenomenon or event. That is, they cannot represent 
the complete phenomenon or event.  What is meant by 
representation? A representation is never a complete 
reproduction of what is being represented but, requires 
conscious or unconscious selection of what aspects will 
be represented and what other aspects will be left out of 
the representation (Franco & Colinvaux, 2000).  In 
order to develop a representation of a target, some 
aspects are isolated to make some kind of 
simplifications. 

4) Mental models are constrained by 
worldviews (Franco & Colinvaux, 2000): People develop 
and use mental models according to their beliefs. In 
other words, a set of limitations forms the possible 
mental models which people use. Above, students’ 
mental models about earth models formed and 
developed according to their presuppositions. For 
instance, students build the disc and a rectangular model 
of earth from their presupposition which is the earth is 
flat. Moreover, for the dual earth, hollow sphere, and 
flattened earth models, they had the presupposition 
which is the ground on which people live is flat, but 
earth is round. Therefore, the earth mental models 
according to students’ mental models are constrained by 

Figure 1. Earth Models (Vosniadou, 1994)
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presuppositions, also used as misconceptions (Franco & 
Colinvaux, 2000). 

Conceptual Models

A conceptual model is an external 
representation created by teachers, or scientists that 
facilitates the comprehension or the teaching of systems 
or states of affairs in the world (Greca & Moreire, 2000 
and Wu et al., 1998). According to Norman (1983), 
conceptual models are external representations that are 
shared by a given community, and have their coherence 
with the scientific knowledge of that community. These 
external representations can be mathematical 
formulations, analogies, graphs, or material objects. An 
example of an object could be a water pump which is 
sometimes used to model a battery in an electric circuit. 
An analogy can be established between an atom and the 
solar system. The ideal gas model is a mathematical 
formulation (Greca & Moreire, 2000). To come to the 
point, we can say that conceptual models are simplified 
and idealized representations of real objects, 
phenomena, or situations. 

Since mathematical models, computer models, 
and physical models are external representations, they 
will be discussed in the following sections under 
conceptual models.

Mathematical Models

A mathematical model is the use of 
mathematical language to describe the behavior of a 
system. That is, it is a description or summarization of 
important features of a real-world system or 
phenomenon in terms of symbols, equations, and 
numbers. Mathematical models are approximations.  
They do not always yield what is actually measured. A 

simple example is "F=m*g".  If we want to express the 
gravitational forces on a falling ball exactly, we must 
consider the force between each possible pair of atoms 
and sum the vectors.  F=m*g yields a value that is close 
enough to use in most situations.     F=m*g only works 
for millions of molecules (like a baseball) close to the 
surface of the Earth. It does not work for a single 
molecule because we need to consider interactions with 
other molecules. 

Mathematics provides one of the powerful 
tools for modeling and solving problems in science and 
other areas. For instance, in chemistry, and physics, we 
use mathematical techniques to model situations and 
solve problems (Hodgson et al., 1999). 

Burghes and Borrie (1979) described 
mathematical modeling as the way in which “real-world” 
problems are translated into mathematical models and 
also, how the results can be applied to the real-world 
situations. In other words, it is the application of 
mathematics to Science, Physics, and many other fields.

The process of mathematical modeling can be 
summarized in figure 2. 

The left side (boxes 1, 6, and 7) represents the 
real-world. The right side (boxes 3 and 4) represents the 
mathematical-world. The middle part (boxes 2 and 5) 
represents the connection between the real and 
mathematical worlds. In the middle part, the problem is 
first simplified and converted into mathematical 
language and later, the mathematical solution is 
translated back into the real world. 

Generally, in mathematical modeling, the 
setting up of the problem, qualitative validation, and 
qualitative prediction sections are important before 
starting to solve the problem. 

Related to this explanation in terms of 
mathematical modeling, here is an example about how 
to use mathematical modeling to solve a physics 
problem. In this example, the way in which problems 
are translated into mathematical models and also, how 
the results can be applied to the real-world situations are 
shown (Burghes & Borrie, 1979). 

Example: Critical angle for shot putters: A shot 
putter lays great emphasis on a smooth build up of 
speed across the throwing circle and this enables him to 
accelerate the shot in a straight line up to the point of 
release. But at what angle should he aim to release the 
shot, and does it make a significant difference to the 
distance thrown? 

For an initial model, it can be assumed that the 
motion is two dimensional as shown in Figure 3. 

We can suppose that the shot leaves with 
speed υ at angle α to the horizontal, and assuming 
constant gravity and no resistive forces, we have the 
usual equations of motion which give the horizontal 
range as 

R
v

g


2 2sin 

 .
For maximum R, sin2α should be equal to 1 

which gives the critical angle α=45. Therefore, for our 
Figure 2. Mathematical Modeling (Burghes&Borrie, 1979)
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mathematical model, the optimum projection angle is 
45. So, the range becomes 

R
g


 2

.
Besides this, we made other assumptions. For 

example, we can assume that the shot can be considered 
as a “point” particle. We can neglect air resistance, also, 
we can assume that the shot is projected from the 
ground level y=0. Even though this model has some 
limitations, we can have some conclusions. For instance, 
the putter makes an error of the critical angle by 10%; 

therefore he/she throws it with 49 5. 
. The range 

becomes

R
g g g

  
  2 2 2

2 459 99 0 99sin( * . ) sin . 

.

So, having the angle of 49 5. 
 results in 1% 

decrease in the range. From this, we can conclude that 
the model says that critical angle is not significant. That 
is, its effect is not much. It is more significant that the 
putter would increase his/her projection speed. For 
example, when he/she increases 5% in speed which is 
going to increase from υ to 1.05υ, the range will increase 
10%. According to the definition of Burghes and Borrie 
(1979), this example is a mathematical modeling because 
it shows the usage of the real-world problem –how to 
achieve the best throw- and translates it to a 
mathematical problem by formulation of a mathematical 
model. So, the shot putter had his best throw after this 
problem was solved by using mathematical model.

As a result, when we go back to the 
mathematical modeling process, we can ask whether 
these conclusions agree with real-world experience or 
not. The British shot putter, Geoffrey Capes is reputed 
to achieve his best throws at a projection angle of 

approximately 55 (Burghes & Borrie, 1979). 
Hestenes (1987) describes a model as a 

substitute object, a conceptual representation of a real 
thing. Most models in physics are mathematical models. 
In other words, in the models, the physical 
characteristics are represented by quantitative variables 
such as equations. 

According to Hestenes (1987), a mathematical 
model has four components:

A set of names for the objects and agents 
which interact with these objects. 

Descriptive variables which represent an 
object’s characteristics; i.e. object variables, state 
variables, and interaction variables.

Equations of the model which describe the 
model’s structure.

Figure 3. Motion of Shot (Burghes, 1980)

Figure 4. The modified Atwood Machine (Hestenes, 1996)
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Interpretation about descriptive variables. 
Interpretation is critical for a model because without 
interpretation the equations of a model do not say 
anything. The equations are abstract by themselves. 

Object variables: These are fundamental 
properties of objects. For instance, mass and charge are 
object variables for the electron. Moment of inertia and 
forms of shape and size are the object variables for the 
rigid body. So, we can say that the object variables are 
the fixed values for a specific object.

State variables: These are fundamental properties 
which can vary with time. They are not fixed values like 
object values. For instance, position and velocity are 
state values for an object. State variables in one model 
can be object variables in another model. For example, 
although mass is a state variable in a model of rocket 
because it is changing with time, it is an object variable 
in other model such as particle models because it is 
constant. 

Interaction variables: These represent the 
interaction of some external object such as the friction 
force, with the object being modeled. For example, in 
mechanics one of the interaction variables is the force 
vector. Work, potential energy, and torque are other 
interaction variables. 

An example from Hestenes (1996) about a 
mathematical model in terms of mechanics in physics 
explains more explicitly what a mathematical model is 
according to him.

In Figure 4, the Situation Map shows a system 
which is composed of 2 objects, two masses m1 and m2 
connected by a massless string (S). These objects 
interact with external agents, the table (T), the earth (E), 
and the pulley (P) as indicated in System Schema. The 
descriptive variables are shown as the force vectors such 
as tensions on the strings, weights of masses, and 
masses in the Interaction Map. The equations of the 
model are shown in the temporal structure for the whole 
system of two objects and for each single object. The 
System Schema and Subsystem Schema specify the 
composition, environment, and connections of the 
system. The System Schema specifies a system which is 
composed of two objects connected by a string (S), 
earth (E), and pulley (P). The closed dotted lines are to 
separate the system from its environment. In the 
Interaction Laws, first, the forces on each object are 
represented by force diagrams. Second, magnitudes of 
the forces are specified by a set of Interaction (force) 
Laws. In the temporal structure part, equations of 
motion are written by using Newton’s Second Law 
F=ma for both two particle system and a single particle 
systems. The last part is the interpretation of the 
equations.

Computer Models

A computer model is a computer program
which attempts to simulate the behavior of a particular 
system. In other words, a computer model is a computer 
program which is created by using a mathematical model 
to find analytical solutions to problems which enable the 

prediction of the behavior of the complex system from a 
set of parameters and initial conditions.

Computer models allow students to develop 
numerical models of the real world. The software is 
called a modeling system or simulation language 
(Holland, 1988). Such computer simulations make it 
possible for students to analyze complex systems. 
Sometimes, complex systems require really very 
sophisticated mathematics to analyze and they cannot be 
analyzed without computers (Chabay & Sherwood, 
1999). Computer simulations may employ many 
representations such as pictures, two-dimensional or 
three-dimensional animations, graphs, vectors, and 
numerical data displays which are helpful in 
understanding the concepts (Sherer et al., 2000). These 
simulations can be either icon-oriented programs or 
programs written by the user. For example, java applets 
are icon-oriented programs in which students do not 
need to write the simulation programs, they just need to 
change parameters. In this situation, students can only 
analyze a model instead of creating their own models. 
An alternate software is the Vpython programming 
language which allows students to create their own 
models. Students are involved in writing and modifying 
programs if needed. The main purpose is to understand 
the phenomenon. 

Here is an example of simulating Newtonian 
mechanics through an icon-oriented simulations 
program (Interactive Physics, Jimoyiannis & Komis, 
2001). First, let me explain a little bit about the 
Interactive Physics software. It provides 2-D simulations 
with which students can simulate fundamental principles 
of Newtonian mechanics. Students do not need to do 
any programming. They simply enter the values of 
variables such as mass, or velocity. Simulations are 
produced by the system. Many physical quantities can be 
measured. Figure 5 shows the interactive physics screen 

Figure 5. Interactive Physics Screen Showing the 
Simulation of Free Fall ( Jimoyiannis & Komis, 2001)
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that simulates a ball falling freely from a given height in 
the earth’s gravitational field. Students can experiment 
by changing the value of the parameters in the system, 
study the physical laws, make assumptions and 
predictions, and make conclusions from the 
stroboscopic representation of a kinematical 
phenomenon and the simultaneous display of the 
position and velocity. Students can repeat their 
experiments whenever they need to do so. Also, they 
can modify the mass of the sphere or hold the gravity 
constant. They can see the results on the computer 
screen and they can get the values of the position y and 
the velocity Vy of the moving object.  

The other example related to computer 
simulation is to use software to create simulations in the 
VPython programming language. VPython makes 
students focus on the physics computations to obtain 3-
D visualizations. Students can do true vector 
computations, which improves their understanding of 
the utility of vectors and vector notation. For example, 
students can study the motion of the earth in orbit 
around the sun by means of writing a program. 
Furthermore, students can study the motion of a planet 
around a star using the computer model of the Earth 
and Sun. The printout of the simulation is shown in the 
following Figure 6.

Figure 6 shows that a planet with a mass of ½ 
that of a sun is orbiting sun in nearly circular orbit while 
the sun does in its orbit. While students write their own 
computer simulation programs and can vary the mass of 
the sun and the mass of planet, they need to cope with 

Figure 6. Visualization for the VPython planetary orbits.

Figure 7. The Solar System 
(http://csep10.phys.utk.edu/astr161/lect/)
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physics. Thus, Students can understand how the 

gravitational force law, 
2

21

d

mGm
Fg 

 works between 
the Sun and the Earth, and how the momentum 

principle,
tFPP beforenew 



 works (G is the 

universal gravitation constant, 21 ,mm represent the 
masses of two objects—here is the masses of the Earth 
and the Sun--d is the distance separating the objects 
centers, momentum principle is discussed in section 
2.3.3). An example is shown in Table 1.

Physical Models

Physical models in the science-education 
community are considered as models of real situations
and can be carried, touched, or held. A physical model is 
used in various contexts to mean a physical 

representation of some thing. That thing may be a single 
item or object such as a car or a large system such as the 
Solar System.  Physical models in science and 
technology allow us to visualize something about the 
thing it represents. That is; a model whose physical 
characteristics resemble the physical characteristics of 
the system being modeled. For example, in primary 
grade classrooms, toys can be used as physical models of 

Table 1.VPython Program for Producing a Real-Time 3-D Animation in Figure 6 of the Earth Going in 
Orbit around the Sun. 

1. from visual import *
2. sun = sphere()
3. sun.pos = vector(-1e11,0,0)
4. sun.radius = 2e10
5. sun.color = color.yellow
6. sun.mass = 2e30
7. sun.p = vector(0, 0, -1e4) * sun.mass          [initial momentum of the sun]
8. earth = sphere()
9. earth.pos = vector(1.5e11,0,0)
10. earth.radius = 1e10
11. earth.color = color.red
12. earth.mass = 1e30
13. earth.p = -sun.p
14. for a in [sun, earth]:
15. a.orbit = curve(color=a.color, radius = 2e9)
16. dt = 86400
17. while 1:
18. rate(100)
19. dist = earth.pos - sun.pos          [distance between the earth and the sun]                      
20. force = 6.7e-11 * sun.mass * earth.mass * dist / mag(dist)**3          [the gravitational force law between the sun 

and the earth]
21. sun.p = sun.p + force*dt           [updating the momentum for the sun]
22. earth.p = earth.p - force*dt       [updating the momentum for the earth]
23. for a in [sun, earth]:
24. a.pos = a.pos + a.p/a.mass * dt
25. a.orbit.append(pos=a.pos)
26. print
Note: The explanations in [  ] are physics relationships that must be set by students. Setting up these physics 
relationships is the model-building step.

    

Figure 8. A Physical Model of the Solar System (http://csep10.phys.utk.edu/astr161/lect/).
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real-world counterparts. Toys model some of the 
functions of the real-world objects such as cars (Rogers, 
2000). As mentioned above, a physical model of the 
Solar System (Figure 7) can be made by representing the 
Sun and the nine planets that orbit it. Several different 
ways can be used to do this. One uses cardboard 
colored circles of construction paper and string to make 
a physical model of our solar system as shown in Figure 
8 (http://csep10.phys.utk.edu/astr161/lect/).

The Figure 7 of the Solar system shows the 
relative sizes of planets, but not actually to scale and 
shows their places in the system such as Mercury in the 
first orbit, Venus in the second orbit, Earth in the third 
orbit, Mars in the forth orbit, Jupiter in the fifth orbit, 
etc. Also, it shows that all of the planets orbit the Sun.

In Figure 8, since the range in size of the Sun 
and the planets is far too large to represent accurately, 
the Sun is showed as the biggest. Jupiter, Saturn, 
Uranus, and Neptune are a bit smaller than the Sun. The 
remainder of the planets is much smaller. That Saturn 
has rings should be considered as well. So, students can 
see relative sizes of planets and can see that the nine 
planets orbit the sun. In addition, they can see that 
Mercury goes in the inner orbit, Venus goes in the 
second orbit, etc. After that, students can see the nine 
planets orbit the Sun.

Physics Models

Modeling means something different to 
physicists. A physics model in the physics-education 
community is considered as a simplified and idealized 
physical system, phenomenon, or idealization. Also, a 
mathematical model can be a component of a physics 
model. For instance, in the physics model of a gas, the 
gas is considered as many small balls which interact with 
each other by means of perfectly elastic collisions. 
Because the gas is ideal, we can apply the mathematical 
rules of classical mechanics. According to Greca & 
Moreira (2001), the physics models determine, for 
instance, the simplifications, the connections, and the 
necessary constraints. As an example one can think of a 
point particle model of a system in classical mechanics. 
A simple pendulum is another example of a physics 
model because it is idealized and consists of a mass 
particle on a massless string of invariant length moving 
in the homogenous gravitational field of the Earth in the 
absence of drag due to air (Czudkova & Musilova, 
2000). 

In terms of physics models, students do not 
use models which are already created. They apply the 
fundamental principles and create their own models. 
Modeling involves making a simplified, idealized physics 
model of a messy real-world situation by means of 
approximations. Then, the results or predictions of the 
model are compared with the actual system. The final 
stage is to refine the model to obtain better agreement, 
if needed. Sometimes it may not be needed to modify 
the model to get more exact agreement with the real-
world phenomena. Even though the agreement may be 
excellent, it will never be exact since there are always 
some influences in the environment that we cannot 

consider while we are building the models. For instance, 
while a rock is falling, the gravitational pull of the earth 
and air resistance are the main influences. However, 
there are also other effects such as humidity, wind and 
weather, Earth’s rotation, even other planets (Chabay & 
Sherwood, 1999). 

Building a physics model always starts from 
some fundamental principles. The three principles used 
in mechanics follow: 

The momentum principle, which is often 
known as “Newton’s second law of motion”: A change 
of momentum is equal to net force times duration of 

interaction,   p F tnet

 
 *  ,

The energy principle: A change in a particle’s 
energy is the final energy minus the initial energy 

(
E Efinal initial

). This change is equal to work (W) 

done by a net force F


, and is represented E W . 
This energy principle is for only one particle. The energy 
principle for a multiparticle system is 
E W E E E Usystem external forces system     , ( ...)1 2

E E1 2, ,.. are the particles’ energies in the 
system. U is the potential energy of interacting particles 
in the system. The important difference between the 
particle work-energy relation and the multiparticle 
energy principle is the potential energy U related to 
interactions inside the system.

The angular momentum principle: The rate of 
change of the angular momentum of a particle relative 
to a location is equal to the torque applied to the particle 

about that location. This is

d L

dt
r F net


  

   
. The 

angular momentum principle for a multiparticle system 

is 

d L

dt
tot

net external




  ,
 which is the rate of change of 

the total angular momentum of a system relative to a 

location, L L L Ltot

   

   1 2 3 ...,  is equal to the net 
torque due to external forces exerted on that system 
relative to the location.

As was mentioned before, these fundamental 
principles are applied to predict or explain the behavior 
of the system. 

In physics modeling (Chabay and Sherwood, 
1999), the following process is followed:

Start from fundamental principles
Estimate quantities
Make assumptions and approximations
Decide how to model the system
Explain / predict a real physical phenomenon in the system
Evaluate the explanation or prediction

In summary, physics modeling is analysis of 
complex physical systems by means of making 
conscious approximations, simplifications, and 
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idealizations. When students make approximations or 
simplifications, they should be able to explain why they 
make them. For instance, in modeling a falling ball, in 
general, air resistance is neglected. So, there is no force 
contribution from air resistance. While students do 
neglect it, they should be able to have reasons for this. 
As an example of modeling, consider the calculation of 
the acceleration of a block is pulled to the right with a 
force F as shown in the following Figure 9.

To analyze this system, we should start with 

the momentum principle, 




 netF
dt

pd

. Because of 
friction between the table and the block, there is 

frictional force, f  in addition to the force, F; pulling the 

block. So, the total force is F F fnet   . 
From the momentum principle, 

d p

dt
F F fnet




  
. 

So, 





dt

pd d mv

dt
m

dv

dt
ma F f

( )
   

 from this, 
it can be concluded that the block moves a constant 

acceleration which is 
a

F f

m




. 
In these more traditional physics courses, 

students use constant acceleration to solve a problem 
instead of developing their own models. “Constant 
acceleration” is a mathematical model which is already 
defined for them. They do not bother to think about air 
resistance or friction. They are taught to select an 
equation to solve the problem. Moreover, even though 
students neglect friction or something in the system with 
respect to conditions, they do not do it consciously. 

 The following example shows how to make 
use of physics modeling to explain a real-world 
phenomenon, which can also be considered as a physics 
problem. 

An amusement park ride (Chabay & Sherwood, 
2002, p106): There is an amusement park ride that some 
people love and others hate in which a group of people 
stand against the wall of a cylindrical room of radius R, 
as the room starts to rotate at higher and higher angular 
speed ω (Figure 10). When a certain critical angular 
speed is reached, the floor drops away, leaving the 
people stuck against the whirling wall. Explain why the 
people stick to the wall without falling down. Include a 

carefully labeled force diagram of a person, and discuss 
how the person’s momentum changes, and why. 

Starting from a fundamental physics principle 
which is the momentum principle in this situation, we 
can determine the known forces and draw the force 
diagram (Figure 11). In Figure 11, the person shown has 
a mass m and moving in the –z direction. Because of its 
gravity, the earth exerts a force mg which is downward 
(-y). The wall exerts a friction force which has a y 
component +f because the person is not falling, and x 

component  FN  normal to the wall because the 
person’s momentum is changing direction. The vertical 
component f of wall force is a frictional force. If the 
wall has friction which is too low, the person will not 

stick to the wall. So, f FN   (μ is the coefficient of 
friction). μ has a value which ranges between 0.1 to 1.0. 
The angular speed should be enough large.

There is momentum change inward; if the net 
force were zero, the person would move in a straight 
line. From circular motion (no change in y direction), 

and the momentum principle, we can find NF
 to show 

why the people stick to the wall without falling down.

Circular motion with constant 



 pp

Figure 9. Pulling a Block (Chabay & Sherwood, 2002)

Figure 10. An amusement Park Ride (Chabay & 
Sherwood, 2002, p106)

Figure 11. Physics Diagram of the Person. At this 
Instant the Person is Moving in the -z Direction
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Combining the above two equations, 

F p f mg

p mv m
d R

dt
m R F p m R

N

N

 

    





  

 and 

, 2

Thus, using f FN  , we can 

find
2

22 ),(
gR

g
wRmwmg


 

. The smaller the 
friction, the higher the angular speed needed. When the 
frictional force is smaller than the gravitational force, 
people cannot stick to the wall and slide down. For this 
reason, the angular speed has to be large enough to 
make the frictional force greater than the gravitational 
force.

SUMMARY AND FINAL 
CONSIDERATIONS

The emphasis of this paper lies on the 
discussion of different types of models and application 
of models and modeling with respect to the teaching 
and learning science particularly physics. These are 
mainly mental models; conceptual models, which are 
mathematical models, computer models, and physical 
models; and physics models. 

The goal of this paper concerning different 
types of models in science education is to help teachers 
and students in order to learn how to use and choose 
models in their courses. Also, the most important aim is 
to make that students can be actively engaged in 
understanding and learning the physical world by 
constructing, using, or choosing models to describe, 
explain, predict, and to control physical phenomena 
(Wells et al., 1995). So, students do not need to 
memorize course materials or equations for their 
courses. They can obtain them by using models. From 
my experience with students who were taking an 
introductory physics course at Purdue University, 
students indicated that they can understand better 
concepts, the meaning of all equations, and how to 
obtain those equations in physics by using physics 
models. The following quotation explores students’ 
thoughts about physics models. 

Student: …there’s more to just physics than 
memorize this humongous block of equations the 
teacher says works. Uh, and plugging in the numbers 
and knowing how to put the equations together.  We’re 
going back and- well we can- we’re really creating a 
model of this system and we can, you know, get rid of 
these factors because the gravitational pull is here is 

really not going to effect how me jumping off a chair is 
going to do anything.  So what we can neglect even 
though there really is a force there it’s small enough that 
we don’t have to.  Just kind of learning about physics in 
a very organized- and going back to elementary steps 
manner (Spring 2005).

As a result, models provide an application of 
the knowledge to real world situations-made to see how 
things apply in the real world instead of just looking at 
equations. In other words, helped students learn and 
understand physical phenomenon.
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