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Introduction 

Many important practical problems of calculating temperature fields in 
multi-layered objects can be considered one-dimensional.  This subject is 
explored by foreign researchers (Korn and Korn 1983; Pichard, 1985; Vaessen, 
1987; Vandana & Banthia, 1989; Cory & Rosenhause, 1997; Lekner, 1990; 
Harmut, 1985; Lindell & Sihvola, 1995) as well as by domestic researchers 
(Kudinov, 2011; Kudinov, Kartashov & Kalashnikov, 2005; Kudinov, Averin & 
Stefanyuk, 2008; Kudinov & Kartashov, 2000; Temnikov, Igonin & Kudinov, 
1982; Bateman, 1958; Falkowski, 1978; Kudryashov, Zavizon & Betsky, 1998; 
Bogdanovich, 1978; Basantkumar et al., 2006, Burlakov, Kondrashov & Maltsev, 
2004; Kalashnikov et al., 1995; 1996). Previously, the author suggested the 
analytical solution of a uniform problem of transient heat conduction in multi-
layered objects under steady-state boundary conditions of third type (Vendin, 
1993; 2013; Vendin & Trubaev, 2013).   
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ABSTRACT 

The problems of transient heat conduction in multi-layered objects are studied. A solution of a 
boundary uniform problem with transient boundary conditions of third type is suggested. The 
Fourier method of variable separation by eigen functions of the problem and Duhamel's integral are 
taken as a basis of the solution. The suggested solution form is of explicit form and due to 
recurrent format of writing basic relations can be useful for numerical calculations and analyses of 
kinetics of transient heating (cooling) of multi-layered objects. 
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Results and Discussion 

A solution of that task under transient boundary conditions of third type is 
described below. 

In the general case the mathematical statement of a one-dimensional 
problem of thermal conductivity for multi-layered objects is defined with the 
following differential equation system: 
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where аi,- temperature conductivity coefficients of the ith layer 
correspondingly; Ti(r,t)- temperature field of the ith layer; x0, xn – coordinates of 
lower and upper geometrical (free) surface of an object correspondingly;  

We also assume that the object is isotropic, i.e. thermophysical parameters 
in each layer are constant and homogeneous throughout the volume it occupies. 

We define free-surface boundary conditions r = xo ,r = xn as boundary 
conditions of third type, assuming that boundary conditions of first and second 
type can be represented as special cases of boundary conditions of third type. 

In this case according to (Kartashov, 2001) we get the following: 
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(2) 
The boundary conditions of conjugating temperature fields and heat flows 

at the boundaries of layer division are generally defined using the following 
expressions: 
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i = 1, 2,…n-1, 

where λi - thermal conductivity of the ith layer. 
The initial distribution of temperature fields in each layer is as follows:  

)()0,( rifriT = ,  i = 1, 2,…n,                                                  (4) 

If we present the desired problem solution as a sum of  
),()(),( trivriftriT += ,                                                          (5) 

the problem comes to determining the functions ),( trvi , which are solution 
of the problem with zero initial conditions and satisfy the following equations: 
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i = 1, 2,…n-1, 0)0,( =riv ,  i = 1, 2,…n,                                                  (9) 

In the general case a problem with time-dependant inhomogeneous 
boundary conditions can be solved by Duhamel's integral (Kartashov, 2001; Korn 
& Korn, 1983): 
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where ),,( triv t!  - problem solution provided that τ is a parameter. 

Then functions ),,( triv t!  should satisfy the differential equation (5) with 

initial conditions )0,,( triv! =0 and free-surface boundary conditions r=x0, xn, as 
well as conjugating conditions: 
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i = 1, 2,…n-1 
Based on the found solution, the functions ),,( triv t!  are determined using 

the following expressions: 
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And the functions ),( trvi  are the following: 
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Where ),(, rmimiF µ!  - problem eigen functions 
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i = 2,3,…n. 

;11 =Z
)1,(2)1,(1

)1,1(21)1,1(1

-+-

---+--
=

ixmiYiBixmiY
ixmiYiBixmiY

iZ µµ

µµ
 ,i = 2,3,…n ,       (18) 

ianamnmi /,, µµ = , mn,µ  - the problem eigen-values, which are 
determined according to the equation 
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 m = 0,1,2,…                                                  (19) 
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Weight function )(rG , as well as specific type of the functions )(rx  and 
)( riiF µ! are found using the following expressions: 

a) Cartesian coordinate system: 
).cos()(2),sin()(1,)(,1)( ririYririYrrrG µµµµx ====                     (24) 

b) spherical coordinate system: 
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c) cylindrical coordinate system: 
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Important note: 
Sometimes when solving problems for a solid sphere or cylinder the found 

solution requires limitation at the sphere center or at the cylinder axis. Then 
lower and upper boundary conditions are as follows: 
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In this case we should assume the following in the found solution for multi-
layered objects: 

,0,1 =mB  )(2),( tjty =ri  , i=1,2...n                               (2.28) 

and all further calculations are made in accordance with the main solution. 

Conclusion 

Thus, we have got the general solution of a boundary uniform problem with 
transient boundary conditions of third type. The suggested solution form is of 
explicit form and due to recurrent format of writing basic relations can be useful 
for numerical calculations and analyses of kinetics of transient heating (cooling) 
of multi-layered objects. 

Different partial solutions of such problems can be directly written with 
regard to boundary conditions (2), as well as expressions  (4), (5), (14) and (2.24) 
– (2.28). 
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