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Introduction 

Serving various purposes such as observing human behavior, clarifying 

the underlying causes of behaviors, and to reveal the causative relations, 

the concept of measurement was defined in many ways. Stevens (1946) 
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defines measurement as the assignment of numerals to objects or events 

according to rules (cited in Crocker and Algina, 1986). Extending the 

definition of measurement, Stevens (1961) defined measurement as the 

observation of a quality, and its expression of the observation results with 

a number or symbol (cited in Baykul, 2010). Objects, behaviors or incidents 

may not be directly observed in the studies conducted in social sciences. 

Structural equation modeling is used in order to measure features that are 

not directly observed, namely the latent structures, test simultaneously 

the multiple regression equations, examine the causal processes and 

conduct the confirmatory factor analysis and path analysis processes.  

Structural equation modeling is a multivariate statistic, and it bears some 

basic assumptions such as normality, extreme value, multicollinearity, 

and sample size (Byrne, 2010). If the variables observed in the structural 

equation modeling were not measured with correct measuring devices, or 

if the data set does not meet the assumptions of the model, all results will 

be biased estimate when the observed and latent variables in the model 

are to be explained (Quesnel, Scherling and Wallis, 2007). In this study, it 

is aimed at investigating how the multicollinearity and sample size 

assumptions reflect on the results. 

Multicollinearity occurs in cases when there are variables which measure 

the same thing, but look like different variables. For instance, one of the 

variables with the correlation coefficient 0.95 can be analyzed, but two of 

them cannot be analyzed at the same time. Multicollinearity among the 

variables is demonstrated if the square of the multiple correlation 

coefficient calculated among all the variables is greater than 0.90, if the 

tolerance coefficient is smaller than 0.10, or if the variance inflation factor 

(VIF) is greater than 10. When there is multicollinearity among the 

variables, either one of the variables must be eliminated, or the two 

variables must be integrated (Kline, 2011). Tabachnick and Fidell (2007) 

indicate that a correlation coefficient 0.90 or more among the variables 

and the variables show the same tendency; moreover, the variables among 

which there is a correlation of 0.70 or more may cause multicollinearity 

problem. In case of multicollinearity, especially if the just identified or 

over-identified model turns into unidentified model, another method is to 

make restricted in the model parameters (Brown, 2006). 

High correlations among the variables indicate the existence of a 

multicollinearity problem. Removal of one of the variables or integration 

of the variables in case of multicollinearity is based on the fact that highly 

correlated variables bear the same features. On the other hand, there may 

be variables in the model identification which do not have the exact same 

features even though they are highly correlated, and which the researcher 
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consider necessary in the model, and it may be found appropriate for the 

variables to be in the theoretical structure of the model. However, it is 

observed in this case that the studies intended for the variables to stay in 

the model are restricted. Within the scope of this research, a model model 

specification which has multicollinearity items, alternatives were formed 

in order for the variables to stay in the model, and investigations were 

conducted (Raykoy and Marcoulides, 2000). 

Widely used by the researchers nowadays, Classical Test Theory (CTT) is 

established on a linear-by-linear association between the observed score 

and true score (Crocker and Algina, 1986; Hambleton and Swaminathan, 

1985; McDonald, 1999; Kline, 2005).  Called the true score model and 

based on X=T+E basic equation, CTT has various assumptions. Some of 

these assumptions include the normal distribution of the random errors 

estimated with regards to the true score, the zero correlation between the 

random errors and the observed score or the true score, the equality of the 

standard deviation of the random error distribution and the standard error 

of the measurement, the equality of the observed score variance and the 

total of the true score variance and the error score variance, and the 

equality of the true score variance-observed score variance to reliability 

(Kline, 2005). In order for the analyses to be conducted in the CTT, the 

participants are required to respond to the items. Accordingly, the 

statistics of the test items (such as item difficulty) depend on the sample, 

and the calculated statistics are interpreted according to the group 

(Embretson and Reise, 2000). Item Response Theory (IRT) is a 

mathematical model defining the correlation between the possibility of an 

item to be correctly responded, and the ability level of the individual which 

the item aims at measuring. The established mathematical model provides 

information with regards to the possibility of responders at various ability 

levels to give response to an item (Crocker and Algina, 1986; Embretson 

and Reise, 2000; Baker, 2011). Hambleton and Swaminathan (1985) 

indicate that there are two main features on which the IRT is based. The 

test performance of a person can be estimated by way of a factor that can 

be expressed as trait or ability, and the correlation between the 

performance of a person about one item and the (performance-

determining) trait enabling him/her to give response to that item can be 

explained with the item characteristic curve. Item characteristic curve is 

the graph of the possibility of the item’s being correctly responded to, as 

the factor determining the test performance of an item or the function of 

the implicit feature. It provides information about a person’s possibility, 

who is at a specific ability level, to correctly respond to an item. 

Theoretically, the ability of the individual is between the negative infinite 

and positive infinite. In terms of ease of application, the item characteristic 
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curve is placed between -3 and +3 (Crocker and Algina, 1986; Baker, 2011). 

There are assumptions on which the IRT is based; such as 

unidimensionality, local independence, and the nature of the item 

characteristic curve (Lord and Novick, 1968; Hambleton and 

Swaminathan, 1985; Embretson and Reise, 2000; Baker, 2011). 

In this study, it is aimed at investigating the fit indexes of the model, 

estimated with a different parameter estimation method and sample size, 

based on material subtraction and restricted parameters (1, CTT and IRT 

values) in the confirmatory factor analysis model with multicollinearity 

problem. Within the scope of the research, a total of 60 cases were 

examined, comprised of sample size (4) x parameter estimation method (3) 

x restricted parameters or integration/subtraction (5). 

Method 

This part is comprised of the data generation and data analysis. 

Data generation 

Model 

Within the scope of the research, the unidimensional model comprised of 

six items, which are in the scale of mathematics learning-related opinions 

in the TIMSS 2011 study, was specificationed. The model is shown in the 

Figure 1. 

 

Figure 1. The model with multicollinearity problem that was examined 

within the scope of the research 

In accordance with the responses of 6148 8th grade students who 

participated in the TIMSS 2011 study and answered all items on the scale, 

exploratory factor analysis was primarily calculated. As a result of the 

analysis, it was determined that the scale items, as shown in the Figure 1, 
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became unidimensional, and they clarified 52.734% of the total variance. 

It was detected that the factor loadings of the items ranged between 0.843 

and 0.465. The Cronbach’s alpha reliability coefficient of the responses 

given to the scale items was estimated as 0.813. The items in the scale are 

shown in the Table 1. 

Table 1. Scale items 

 

 

Math 

X1. Enjoy learning mathematics. 

X2. Wish have not to study mathematics.*** 

X3. Math is boring. 

X4. Learn interesting things. 

X5. Like mathematics. 

X6. Important to do well in math. 

***reverse items. 

It was detected that there was a positive and high correlation among the 

responses given to the items X1 and X5 in the scale, and that this 

correlation caused a multicollinearity problem.  

The degree of freedom was calculated for the single-factor model 

established with the abovementioned items. The model has five observed 

variables, and there are 6*(6+1) / 2 = 21 variables in the variance-

covariance matrix of the model. As seen in the Figure 1, a total of 12 

parameters will be estimated in Model 1 - six factor loadings and six error 

variances. As the degree of freedom of Model 1 is 21-12=9, the model is 

seen to be an “over-identified model”. 

Model Parameter 

Data generation model parameters were determined in accordance with 

the responses given by 6148 8th grade students who participated in the 

TIMSS 2011 study in Turkey and who answered all the scale items. The 

correlation matrix and descriptive statistics referenced in data generation 

are shown in Table 2 and Table 3. 

Table 2. Correlation Matrix Referenced for Data Generation  
X1 X2 X3 X4 X5 X6 

X1 1 
     

X2 ,432 1 
    

X3 ,543 ,580 1 
   

X4 ,470 ,274 ,326 1 
  

X5 ,867 ,489 ,623 ,499 1 
 

X6 ,333 ,139 ,188 ,289 ,334 1 
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Table 3. Average and Standard Deviation Value Referenced for Data 

Generation 

 

Items 

X̅  SS  

X1 1,77  0,946  

X2 2,37  1,187  

X3 2,25  1,123  

X4 1,80  0,950  

X5 1,93  1,043  

X6 1,22  0,590  

 

As a standard, the generated data was turned into raw scores, and they 

were rounded up the closest whole number possible.  

 

Sample Size 

In this research, investigations were conducted on the sample sizes of 100, 

250, 500 and 1000. 

Iteration Number 

In the research, each datum was generated with 20 iterations. For 20-

iteration purposes, 20*12=240 data were generated in the analyses. 

Monte Carlo Study 

As Monte Carlo simulation studies can be used for the purposes of creating 

independent data sets under relevant conditions, making test statistics or 

calculations for all data sets created, determining the true sample size, 

and summarizing the statistics estimated in the sample sizes (Fan et al, 

2012; Davidian, 2005), data were created in this study by way of Monte 

Carlo simulation method. So it is the same equations of the correlation, co-

variance, and the whole mathematical model all the data which include 

different sample size. 

Data Analysis 

Assumptions examination 

Assumptions of four different data sets created for each model were 

examined. The fundamental assumptions of the structural equation 

modeling – missing data, outliers, non-normality of data distributions, 

linearity, homoscedasticity – were examined. As sample size is the 
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variable of the research, sample size assumptions was not emphasized. 

Moreover, the multicollinearity problem of the model was taken into 

consideration. 

Analyses 

Following the data creation, the estimations were made by way of 

maximum likelihood (ML), unweighted least squares (ULS), generalized 

least squares (GLS) parameter estimation methods. The analyses are 

shown in Table 4. 

Table 4. Depiction of Analysis Stages 

Analysis Stages Sample size 

100 250 500 1000 

RP* X X X X 

IS** X X X X 

II*** X X X X 

PEM**** X X X X 

FI****** X X X X 

* RP: Restricted Parameters (1, CTT- IRT) 

** IS: Item subtraction 

*** II: Item integration 

**** PEM: Parameter Estimation Methods (ML- ULS-GLS) 

*****FI: Fit Indexes (𝑋2/sd, RMSEA, GFI, CFI, SRMR, NFI) 

In this study, the item parameters causing multicollinearity problem in 

the model were narrowed down. Based on the CTT measurement model, 

item-total correlation coefficients were used in the restrictions. aij 

parameter, defining item discrimination, was used in the IRT 

measurement model. aij, which is equal to the item characteristics curve 

slope, provides information about the quality of the item. The increase in 

the estimated aij parameter shows the increase in item discrimination 

(Embretson and Reise, 2000). 

SAS 9.1.3 package program was used in data creation and verification of 

the creation. SAS 9.1.3, LISREL 8.7 program was used in the parameter 

estimation and estimations of the models, and the obtained results were 

compared. SPSS 21.0 and MULTILOG programs were used in the CTT-

based parameter estimations and IRT-based parameter estimations, 

respectively, and the results were tabulated and reported. 
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Findings 

1. What are the fit indexes of the model with a multicollinearity 

problem, estimated with different parameter estimation methods? 

Within the scope of the research, the fit indexes of the model with a 

multicollinearity problem determined as a result of the estimations made 

by using different parameter estimation methods are shown in Table 5. 

Table 5. Fit Indexes of the Model with a Multicollinearity Problem, 

Estimated with Different Parameter Estimation Methods  

Sampl

e Size  

Paramete

r 

Estimatio

n Methods 

Fit Indexes 

X2 

(sd) 

X2/s

d 

RMSE

A 

SRM

R 

GF

I 
CFI 

NF

I 

 

100 

ML 34,15 

(9) 3,79 0,17 0,11 

0,9

0    

0,8

9 

0,8

7 

ULS 16,6 

(9) 

1,84 0,13 0,08 0,9

8 

0,9

7 

0,9

4 

GLS 16,05 

(9) 

1,78 0,12 0,18 0,8

2 

0,7

7 

0,7

6 

250 

ML 50,94 

(9) 

5,66 0,16 0,092 0,9

2 

0,9

3 

0,9

2 

ULS 39,93 

(9) 

4,44 0,12 0,072 0,9

8 

0,9

6 

0,9

5 

GLS 34,50 

(9) 

3,83 0,11 0,11 0,8

7 

0,8

4 

0,8

1 

500 

ML 97,56 

(9) 

10,8

4 

0,11 0,063 0,9

4 

0,9

5 

0,9

4 

ULS 49,33 

(9) 

5,48 0,09 0,07 0,9

9 

0,9

6 

0,9

5 

GLS 52,05 

(9) 

6,01 0,09 0,09 0,8

9 

0,8

9 

0,8

4 

1000 

ML 246,9

2 (9) 

27,4

4 

0,11 0,061 0,9

4 

0,9

5 

0,9

5 

ULS 154,8

3 (9) 

17,2 0,098 0,058 0,9

9 

0,9

8 

0,9

7 

GLS 147,4

8 (9) 

16,3

9 

0,098 0,087 0,9

0 

0,9

0 

0,8

9 
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* Fit Indexes: X2 (sd): Ki-kare (serbestlik derecesi), RMSEA: Root Mean Square Error of 

Approximation, SRMR: Standardized Root Mean Square Residual, GFI: Goodness of Fit 

Index, CFI: Comparative Fit Index, NFI: Normed Fit Index, NNFI: Non-Normed Fit Index 

 

X2/sd fit indexes of the model in which the multicollinearity hypothesis is 

not met, as seen in Table 5, increased in all parameter estimation methods 

(ML, ULS, GLS), depending on sample size. RMSEA and SRMR fit indexes 

were detected to decrease depending on the sample size. A general increase 

was detected in the GFI, CFI and NFI indexes as well, parallel to the 

increase in the sample size. Even though there is a multicollinearity 

problem in the model, the model-data concordance is obtained in 500 and 

1000 samples, depending on the sample size. 

2. What are the fit indexes estimated with different parameter 

estimation methods as a result of the integration/subtraction of 

multicollinearity problem-causing items? 

Multicollinearity problem occurs in cases when the correlation among 

variables is high. This shows that the variables actually bear the same 

structures, and that they measure the structure to be measured at the 

same level and under the same condition (Brown, 2006). In this case, 

subtraction of one of the multicollinearity problem-causing items, or the 

elimination of items is suggested (Kline, 2005). Accordingly, the first and 

fifth items which cause the multicollinearity problem were respectively 

subtracted, the items were eliminated, their average was calculated, as 

well as the fit indexes. Estimation results are shown in Table 6. 

Table 6. Fit Indexes Estimated with Different Parameter Estimation 

Methods as a Result of Item Integration/Subtraction 

 
SS  PEM Analysis 

Stages 

Fit Indexes 

X2 (sd) X2/sd RMSEA SRMR GFI CFI NFI 

 

 

 

 

100 

 

ML 

X1-X5 

integration 

21,37 

(5) 

4,27 0,22 0,085 0,92 0,88 0,85 

X1 

subtraction 

22,64 

(5) 

4,53 0,22 0,087 0,91 0,87 0,85 

X5 

subtraction 

21,41 

(5) 

4,28 0,18 0,085 0,92 0,86 0,83 

 

ULS 

X1-X5 

integration 

11,36 

(5) 

2,27 0,15 0,085 0,99 0,95 0,92 

X1 

subtraction 

11,86 

(5) 

2,37 0,15 0,091 0,97 0,93 0,92 

X5 

subtraction 

12,00 

(5) 

2,40 0,12 0,091 0,97 0,94 0,90 

 

GLS 

X1-X5 

integration 

12,21 

(5) 

2,44 0,16 0,13 0,87 0,74 0,74 

X1 

subtraction 

12,80 

(5) 

2,56 0,15 0,13 0,86 0,76 0,74 
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X5 

subtraction 

12,04 

(5) 

2,41 0,120 0,12 0,87 0,80 0,74 

 

 

 

 

250 

 

ML 

X1-X5 

integration 

49,87 

(5) 

9,97 0,18 0,078 0,91 0,88 0,87 

X1 

subtraction 

51,69 

(5) 

10,34 0,19 0,077 0,92 0,88 0,88 

X5 

subtraction 

47,08 

(5) 

9,42 0,18 0,080 0,92 0,87 0,86 

 

ULS 

X1-X5 

integration 

29,90 

(5) 

5,98 0,14 0,080 0,99 0,93 0,93 

X1 

subtraction 

34,97 

(5) 

7,99 0,16 0,080 0,99 0,93 0,92 

X5 

subtraction 

29,36 

(5) 

5,87 0,14 0,085 0,98 0,94 0,92 

 

GLS 

X1-X5 

integration 

32,07 

(5) 

6,41 0,15 0,10 0,88 0,76 0,73 

X1 

subtraction 

32,97 

(5) 

6,59 0,15 0,10 0,88 0,76 0,75 

X5 

subtraction 

27,66 

(5) 

5,53 0,13 0,10 0,89 0,78 0,74 

 

 

 

 

500 

 

ML 

X1-X5 

integration 

83,72 

(5) 

16,74 0,19 0,071 0,93 0,91 0,90 

X1 

subtraction 

82,80 

(5) 

16,56 0,19 0,073 0,92 0,90 0,89 

X5 

subtraction 

83,05 

(5) 

16,61 0,18 0,067 0,93 0,91 0,90 

 

ULS 

X1-X5 

integration 

39,39 

(5) 

7,88 0,12 0,072 1,00 0,94 0,94 

X1 

subtraction 

44,85 

(5) 

8,97 0,13 0,080 0,99 0,95 0,93 

X5 

subtraction 

45,72 

(5) 

9,14 0,13 0,080 0,99 0,94 0,93 

 

GLS 

X1-X5 

integration 

46,83 

(5) 

9,37 0,13 0,090 0,89 0,81 0,74 

X1 

subtraction 

44,44 

(5) 

8,89 0,13 0,095 0,88 0,81 0,76 

X5 

subtraction 

44,97 

(5) 

8,99 0,13 0,084 0,91 0,80 0,76 

 

 

 

 

1000 

 

ML 

X1-X5 

integration 

245,88 

(5) 

49,18 0,18 0,063 0,94 0,92 0,91 

X1 

subtraction 

237,98 

(5) 

47,60 0,18 0,062 0,94 0,92 0,92 

X5 

subtraction 

246,95 

(5) 

49,39 0,18 0,064 0,94 0,91 0,90 

 

ULS 

X1-X5 

integration 

122,84 

(5) 

24,57 0,11 0,065 1,00 0,96 0,95 

X1 

subtraction 

121,36 

(5) 

24,27 0,12 0,065 0,99 0,96 0,95 

X5 

subtraction 

123,27 

(5) 

24,65 0,12 0,068 0,99 0,95 0,94 

 

GLS 

X1-X5 

integration 

129,93 

(5) 

25,99 0,12 0,081 0,91 0,82 0,81 

X1 

subtraction 

120,23 

(5) 

24,05 0,13 0,081 0,91 0,84 0,83 
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X5 

subtraction 

124,20 

(5) 

24,84 0,12 0,082 0,91 0,81 0,80 

 

When the table is examined, an increase in the X2/sd fit index depending 

on the sample size was observed. The increase observed before the 

estimation (in case when the multicollinearity assumption is violated) was 

also caused by the integration/subtraction of the multicollinearity 

problem-causing items. RMSEA and SRMR value was detected to decrease 

in line with the sample size, and the fit index was detected to be fixed after 

a sample size of 500. GFI, CFI and NFI fit indexes were detected to 

increase in line with the sample size, and to be generally fixed after a 

sample size of 500. In this study, GFI goodness of fit value was detected to 

have been predicted higher than the increasing CFI and NFI goodness of 

fit values. 

The model-data fit estimated after processes such as parameter prediction 

methods and item integration/subtraction based on the sample size was 

detected to be lower than the model-data fit estimated in case of the 

violation of multicollinearity assumption (before the process). Especially 

in case the assumption is violated as the sample size decreases, it was 

detected that the model-data fit was inclined to be estimated higher, and 

created biased results. In other words, the multicollinearity assumption, 

especially in groups with small sample size, may result in model-data 

concordance. Within the scope of the research, it was determined that in 

case of multicollinearity, the items causing multicollinearity can be 

integrated or subtracted. 

An addition during the process, it have been studied how the change of 

other variable parameters and it was determined to be minor differences. 

For example lambda coeffient of X2 of the model in which the 

multicollinearity hypothesis is not met in 100 sample size, is estimated 

0,57. It was estimated 0,63; 0,62 and 0,61 respectively when X1-X5 

integrationed, X1 subtractioned and X5 subtractioned. 

3. What are the fit indixes estimated with different parameter 

prediction methods as a result of the restriction of 

multicollinearity problem-causing items? 

There is item loss in case of item integration/subtraction, and, especially 

in the adaptation studies, subtraction of items from the scale or the 

integration of item scores may cause problems. In order for the estimations 

to be made without item loss, the parameters of the first and fifth items 

were fixed to 1, CTT values and IRT values, respectively. Estimations were 
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made with ML, ULS and GLS parameter prediction method at 100, 250, 

500 and 1000 sample sizes. The estimation results are shown in Table 7. 

 

 

Table 7. Fit Indixes Estimated with Different Parameter Prediction 

Methods as a Result of Item Restriction  

 
SS  PEM Analysis 

Stages 

(restriction) 

Fit Indexes 

X2 (sd) X2/sd RMSEA SRMR GFI CFI NFI 

 

 

 

 

100 

 

ML 

𝜆1=1,00; 

𝜆5=1,00 

34,38 

(10) 
3,44 0,17 0,100 0,90 0,89 0,87 

𝜆1=0,795; 

𝜆5=0,852 

34,52 

(10) 

3,45 0,16 0,093 0,90 0,89 0,86 

𝜆1=4,370; 

𝜆5=7,155 

69,98 

(10) 

7,00 0,30 0,330 0,81 0,77 0,75 

 

ULS 

𝜆1=1,00; 

𝜆5=1,00 

17,35 

(10) 

1,73 0,14 0,085 0,97 0,97 0,94 

𝜆1=0,795; 

𝜆5=0,852 

17,51 

(10) 

1,75 0,13 0,081 0,98 0,95 0,94 

𝜆1=4,370; 

𝜆5=7,155 

32,18 

(10) 

3,22 0,24 0,140 0,84 0,84 0,84 

 

GLS 

𝜆1=1,00; 

𝜆5=1,00 

15,62 

(10) 

1,56 0,14 0,25 0,82 0,65 0,62 

𝜆1=0,795; 

𝜆5=0,852 

16,30 

(10) 

1,63 0,13 0,20 0,82 0,70 0,66 

𝜆1=4,370; 

𝜆5=7,155 

37,00 

(10) 

3,70 0,32 0,84 0,56 0,47 0,45 

 

 

 

 

250 

 

ML 

𝜆1=1,00; 

𝜆5=1,00 

82,84 

(10) 
8,28 0,17 0,087 0,91 0,91 0,91 

𝜆1=0,806; 

𝜆5=0,840  

75,89 

(10) 

7,59 0,16 0,09 0,91 0,92 0,91 

𝜆1=3,550; 

𝜆5=4,430  

53,79 

(10) 

5,38 0,25 0,26 0,83 0,79 0,76 

 

ULS 

𝜆1=1,00; 

𝜆5=1,00 

53,20 

(10) 

5,32 0,13 0,008 0,98 0,94 0,94 

𝜆1=0,806; 

𝜆5=0,840 

50,55 

(10) 

5,06 0,13 0,081 0,98 0,95 0,94 

𝜆1=3,550; 

𝜆5=4,430  

42,88 

(10) 

4,29 0,17 0,12 0,96 0,92 0,90 

 

GLS 

𝜆1=1,00; 

𝜆5=1,00 

55,46 

(10) 

5,55 0,13 0,22 0,84 0,71 0,70 

𝜆1=0,806; 

𝜆5=0,840 

49,26 

(10) 

4,93 0,12 0,19 0,86 0,75 0,74 

𝜆1=3,550; 

𝜆5=4,430  

48,38 

(10) 

4,84 0,26 0,67 0,61 0,65 0,61 

 

 

 

 

 

ML 

𝜆1=1,00; 

𝜆5=1,00 

141,26 

(10) 
14,13 0,16 0,083 0,90 0,91 0,90 

𝜆1=0,790; 

𝜆5=0,851 

113,84 

(10) 

11,38 0,16 0,076 0,92 0,92 0,92 
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500 𝜆1=3,230; 

𝜆5=7,180 

451,94 

(10) 

45,19 0,24 0,22 0,93 0,80 0,80 

 

ULS 

𝜆1=1,00; 

𝜆5=1,00 

74,38 

(10) 

7,44 0,11 0,078 0,98 0,95 0,94 

𝜆1=0,790; 

𝜆5=0,851 

60,52 

(10) 

6,05 0,10 0,074 0,98 0,97 0,95 

𝜆1=3,230; 

𝜆5=7,180 

291,21 

(10) 

29,12 0,15 0,010 0,96 0,91 0,91 

 

GLS 

𝜆1=1,00; 

𝜆5=1,00 

81,84 

(10) 

8,18 0,12 0,17 0,84 0,76 0,74 

𝜆1=0,790; 

𝜆5=0,851 

62,67 

(10) 

6,27 0,10 0,12 0,86 0,83 0,80 

𝜆1=3,230; 

𝜆5=7,180 

508,60 

(10) 

50,86 0,20 0,55 0,66 0,79 0,74 

 

 

 

 

1000 

 

ML 

𝜆1=1,00; 

𝜆5=1,00 

312,06 

(10) 
31,21 0,16 0,076 0,91 0,92 0,92 

𝜆1=0,804; 

𝜆5=0,869 

271,47 

(10) 

27,15 0,14 0,067 0,93 0,94 0,94 

𝜆1=3,510; 

𝜆5=10,300  

593,46 

(10) 

59,35 0,15 0,065 0,94 0,95 0,94 

 

ULS 

𝜆1=1,00; 

𝜆5=1,00 

193,94 

(10) 

19,39 0,086 0,066 0,99 0,96 0,96 

𝜆1=0,804; 

𝜆5=0,869 

176,17 

(10) 

17,62 0,087 0,061 0,99 0,97 0,97 

𝜆1=3,510; 

𝜆5=10,300  

300,80 

(10) 

30,08 0,11 0,071 0,99 0,96 0,95 

 

GLS 

𝜆1=1,00; 

𝜆5=1,00 

189,03 

(10) 

18,90 0,075 0,17 0,85 0,91 0,82 

𝜆1=0,804; 

𝜆5=0,869 

165,75 

(10) 

16,58 0,088 0,11 0,89 0,91 0,81 

𝜆1=3,510; 

𝜆5=10,300  

673,39 

(10) 

67,34 0,12 0,093 0,89 0,84 0,82 

 

When the information in the Table 7 is examined, the X2/sd value was 

detected to increase, depending on the sample size, even after the 

restriction of item parameters. RMSEA and SRMR decreasing fit indexes, 

as expected, were detected to be predicted lower as the sample size 

decreased. GFI, CFI and NFI increasing fit indexes were detected to have 

been predicted higher with ULS parameter prediction method, when 

compared to ML and GLS. In addition, GFI fit index is observed to have 

higher values when compared to CFI and NFI fit indexes.  

As a result of the fixation of the item parameters to 1 and the CTT values, 

higher goodness of fit values was predicted when compared to the fixation 

to IRT values. In the model formed by the fixation of model parameter 

values to 1, it was detected that the ML and item-data concordance was 

obtained in 250 samples.  

If item loss is not desired, and if it is considered necessary for the item not 

to be subtracted in accordance with an expert opinion, it is observed that 
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the parameters can be predicted with CTT and be restricted to these 

values. It was determined that the restrictions can be made with the 

values obtained from IRT in great sample sizes. 

An addition during the process, it have been studied how the change of 

other variable parameters and it was determined to be major differences. 

For example lambda coeffient of X2 of the model in which the 

multicollinearity hypothesis is not met in 100 sample size, is estimated 

0,57. It was estimated 0,63; 0,62 and 3,11 respectively when restricted 1, 

CTT, IRT parameters. 

Results 

In this study, the effect of predictions made by using different parameter 

prediction methods and at different sample sizes on the model-fit indexes 

was examined, in case when the multicollinearity assumption is violated 

in confirmatory factor analysis. As a result of the examination, the model-

data fit values estimated by violating the multicollinearity assumption 

were detected to be higher and biased when compared to the concordance 

values estimated based on item integration/subtraction. In the models 

with multicollinearity problem, it was determined that similar model-data 

fit values were obtained as a result of the subtraction of one of the 

multicollinearity problem-causing items and the integration of items. As 

the sample size increases (e.g. 500 and more), it was detected that the 

model-data fit values estimated as a result of item parameter restriction 

became closer to the values estimated with the integration or subtraction 

of items. There is not a certain acceptance with regards to sample size in 

the structural equation modeling analyses, and it is known that sample 

size has an effect on the parameter prediction methods and fit indexes. 

Determining the minimum sample size is considered an important 

problem in structural equation modeling (Jackson, Voth and Frey, 2013). 

Many researchers (Bentler, 1990; Fan, Thompson and Wang, 1999; Kim, 

2009; Iacobucci, 2009; Kline, 2011; Jackson et al, 2013) studied on sample 

size, but a certain suggestion could not be made with respect to sample 

size. Schermelleh-Engel, Moosbrugger and Müller (2003) indicate that 400 

and more observations are needed for predictions to be made with 

maximum likelihood at any situation. Anderson and Gerbing (1984) 

express that three and more indicators, and 100 observations are to be 

found for each factor, and that a sample size of 150 is adequate for the 

analyses (cited in Iacobucci, 2009, p.92). According to another view, the 

minimum sample size needed for the structural equation modeling can be 

unconditional 200 persons or can be conditionally determined based on the 

features of the model. In the first studies conducted for the minimum 

sample size condition to be determined, sample size (n) was expressed as 
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n/q, depending on the parameter number to be estimated (q) (Jackson et 

al, 2013). There are researches accepting this rule at various levels (Bollen, 

1989; Herzog and Boomsma, 2009; Kim, 2009 and Bentler, 2006; Kline, 

2011; Marsh et al, 1988; Mueller, 1996; Nevitt and Hancock, 2004; Ullman, 

1996); and there are ones that still do not reach a consensus on the n/q 

rule (Jackson, 2003, 2007; Marsh, Hau, Balla, and Grayson, 1998). 

Conditioned studies in the determination of sample size were then tried 

depending on values such as factor number and factor load value (cited in 

Jackson et al., 2013, p.87). They show that a sample size 500 is adequate 

for the confirmatory factor analysis in this study. 

X2/sd value was detected to monotonously increase in all prediction 

methods, depending on the sample size. In other researches, the chi-

square fit index, which was detected to generate insensitive results in 

small samples as well, was detected to become insensitive as the sample 

size increases. Iacobucci (2009) indicates that the X2 fit index needs great 

sample sizes; and similarly, Kenny and McCoach (2003) express that the 

statistical strength of X2 fit index is low in small samples, and that 

differentiations cannot be made between the good and bad models of the 

fit index. In this case, it is suggested to report the X2/sd value in both small 

and big sample groups in evaluating the model-data concordance, and to 

take the result into consideration. It was detected to be more coherent 

when compared to RMSEA, a decreasing concordance index, and sample 

size, a SRMR value. Kline (2011) indicates that the X2 fit index is 

dramatically affected by the sample width. Diamantopoulos and Siguaw 

(2000) explain that especially the RMSEA decreasing fit index is one of the 

most informative values, and Byrne (1998) states that he makes 

estimations based on the universe covariance of the fit index.  The fact that 

the decreasing goodness of fit values –RMSEA, which generally does not 

take a value smaller than 0.08 in any sample size, and SRMR, which 

generally does not take a value smaller than 0.05– decrease depending on 

the sample size, contrary to X2 goodness of fit, shows that the model co-

variations formed at different sample sizes are also similar.   

As a result of the subtraction and integration of the items, and the fixation 

of the parameters to 1, CTT values, and IRT values, it was determined 

that higher estimations were made when compared to ML and GLS, by 

using the ULS parameter prediction method based on the asymptotic co-

variance matrix at all sample sizes. Even though Schumacker and Lomax 

(2004) indicate that ML and GLS parameter methods create similar 

results under the multivariate normalcy assumption, the estimations 

show that GLS parameter prediction method makes lower fit index 

estimations when compared to ML, especially in small sample groups. 
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The fit value parameters predicted as a result of the fixation of item 

parameters to 1 in small sample groups were detected to be higher than 

the values estimated as a result of fixing them to CTT and IRT values. As 

the sample size increases, it was detected that the models with parameter 

values fixed to 1 had similar fit values with parameters with values fixed 

to CTT values; and that in cases when the sample size reaches 1000, the 

models with parameters fixed to IRT values create similar results with 

regards to model-data fit with the modes formed with restrictions. Item 

parameters are suggested to be fixed to 1 or another value (Schumacker 

and Lomax, 2004). In the study he conducted, Sörbom (1975) examined the 

goodness of fit values estimated as a result of the parameters fixed to 

values other than zero. The difference between X2 values in the models in 

which the item parameters are free and restricted was examined, and it 

was determined whether there is a meaningful difference between the fit 

indexes. It was expressed that as the absolute value to be fixed increases, 

the fit value of the model will increase. Schumacker and Lomax (2004) 

indicate that predictable values, if any, can be used in fixing the item 

parameters. Stoel, Garre, Dolan and Wittenboer (2006) indicate that the 

unequal restrictions must be used in the structural equation modeling, 

that the items can be equalized to factor load values or higher values, and 

that this will increase the statistical strength of the model. Stoel et al 

(2006) state that adequate information is required to be needed for 

parameter restriction. Andrews (1999) reached the conclusion that the 

variances of some variables are equalized to zero as a result of restrictions 

with random numbers. Rindskopf (1983) suggests that parameters must 

be restricted with unequal values instead of equal or fixed values.  In case 

of a multicollinearity problem in the model examined under different 

conditions within the scope of this research, as researchers (Kline, 2011, 

Brown, 2006) indicate, the problem-causing items may be subtracted or 

integrated. If item loss is not desired or it is considered necessary for the 

item not to be subtracted, it is understood that the parameters can be 

predicted with CTT and be restricted to these values. It was determined 

that the restrictions can be made with the values obtained from IRT in 

great sample sizes. 

Based on the results of this research, it is asserted that all assumptions, 

as well as sample size and multicollinearity problem, are required to be 

examined before the confirmatory factor analysis is estimated. Otherwise 

there may be biased predictions. One of the multicollinearity problem-

causing items may be subtracted or the items may be integrated. In order 

for the item not to be lost, the item parameters may be restricted. As 

information is obtained before the items, the values predicted with the 
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classical test theory may be used in parameter restriction instead of 0 or 

1.  
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