
 
CORRESPONDENCE  M. Javari        majid_javari@yahoo.com  
© 2017 M. Javari. 
Open Access terms of the Creative Commons Attribution 4.0 International License apply. The license permits 
unrestricted use, distribution, and reproduction in any medium, on the condition that users give exact credit to the 
original author(s) and the source, provide a link to the Creative Commons license, and indicate if they made any 
changes. (http://creativecommons.org/licenses/by/4.0/) 

 
 
 
 
 
 
 

 

 

 

 

 

Introduction 

Rainfall spatial variability express distribution values of rainfall and are 

utilized as an essential climatic element in various subjects, such as 

environmental planning, hydrology and natural and water resource 

management among others elements. (Benavides, Montes, Rubio, & Osoro, 2007; 
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ABSTRACT 
In this study, represents a new climatic modeling of monthly rainfall for Iran (1975–2014), 

presented with the spatially variability, patterning monthly rainfalls series available in the 140 

stations and rainfall points. Eight special interpolation methods were estimated and considered: 

the inverse distance weighting (IDW), the ordinary kriging (OK), the simple kriging (SK), the 

universal kriging (UK), the indicator kriging (IK), the probability kriging (PK), the disjunctive kriging 

(DK) and the empirical Bayesian kriging (EBK). The results of the several methods were studied and 

assessed by the validation indicators, evaluating the outcomes from the methods with the actual 

rainfalls series and predicting various residuals amounts. The eight methods presented suitable for 

IDW, OK, UK and EBK than for other methods with the least RMSE (IDW=0.497, OK=0.37, UK=0.398 

and EBK=0.189), and for the spatial variability, rather than another patterns, as well at 31200 

rainfall points in January than 37261 points for another series. The suitable and best outcomes 

were realized with EBK and OK utilized for the actual rainfalls series in the Iran. The EBK and OK 

perfected the precision of the rainfall spatial variability analysis with respect to IDW and UK. We 

present a method of rainfall monthly patterns, using the EBK and OK to predict any spatial 

variations in the monthly rainfall for the period of 2014–2064 over Iran.  
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Fand et al., 2014). In addition, rainfall spatial variability modeling are an 

important element in predicting for rainfall distribution and climatic 

classification, to predict environmental patterns and to analysis how the 

precipitation relates with other climatic elements (Fares et al., 2014; Feizizadeh, 

Shadman Roodposhti, Jankowski, & Blaschke, 2014; Keshavarzi, Ebrahimi, & 

Moore, 2015). Hence, environmental management and research need this 

rainfall change as a rule for realizing many processes, as it is the main factor 

affecting precipitation patterns, in the sense that its action thought to be at the 

earth's surface process (Machiwal & Jha, 2014; Martínez-Cob, 1996; Masoud, 

2014). Therefore, spatial variation modeling of monthly precipitation, are of 

interest for climatologists and hydrologist (Benavides et al., 2007; Çelik, 2015; 

Dummer, Yu, Nauta, Murimboh, & Parker, 2015). Different interpolation 

methods have been used for modeling the geostatistical patterns of monthly 

precipitation. The most widely used interpolation methods are deterministic and 

geostatistical methods, deterministic interpolation techniques, global and local 

models, Inverse Distance Weighting (IDW), kriging interpolation and spatial 

least squares analysis methods (Elbeih, 2015; Feizizadeh et al., 2014; 

Haberlandt, 2007; Jinliang Huang, Huang, Pontius Jr, & Zhang, 2015; Javari, 

2015). Several researchers have compared different methods (splines, inverse 

distance weighting, Kriging and Cokriging and types of kriging) for monthly 

precipitation in various parts of world (Jinliang Huang et al., 2015; Karacan, 

Olea, & Goodman, 2012; Karagiannis-Voules et al., 2015; Mentis, Hermann, 

Howells, Welsch, & Siyal, 2015; Odeh, Crawford, & McBratney, 2006).These 

methods can be used to produce the maps of kriging predicted values, maps of 

kriging standard errors associated with predicted values, maps of probability, 

indicating whether or not a predefined critical level was exceeded and maps of 

distribution for a predetermined probability level. In the monthly-based 

interpolation, different results can be inferred from the various methods a plied 

in the same environmental condition, such as include inverse distance weighting 

(IDW), global polynomial interpolation (GPI), local polynomial interpolation 

(LPI), radial basis functions (RBF), ordinary kriging (OK), simple kriging (SK), 

universal kriging (UK), indicator kriging (IK), probability kriging (PK), 

disjunctive kriging (DK) and empirical Bayesian kriging (EBK). Some studies 

showed that the accuracy of OK, UK and EBK in the study area are higher than 

that of another methods (Babak, 2014; Cheng, Hsieh, & Wang, 2007; Ford & 

Quiring, 2014; Plouffe, Robertson, & Chandrapala, 2015; Shahbazi, 

Aliasgharzad, Ebrahimzad, & Najafi, 2013; Verdin, Rajagopalan, Kleiber, & 

Funk, 2015; Wang et al., 2014; Xu, Zou, Zhang, & Linderman, 2014). In view of 

the spatial-temporal variation patterns on the geostatistical interpolation, this 

paper takes eleven interpolation methods that IDW, OK, UK and EBK selected 

to interpolate based on the monthly, seasonal and annual rainfall from 

observation in 140 stations and 37261 points of rainfall in 1975–2014 and 

forecasting of spatial variations for future (2014-2064). We also investigated the 

precipitation trend spatial variations. Geostatistical interpolation methods can 

be employed as a versatile GIS technique to provide a suitable framework for the 

spatial variation analysis of precipitation patterns and precipitation variations. 

The rest of the paper is organized as follows: in Section. 2, we briefly introduce 

the geostatistical model and the geostatistical interpolation methods to provide a 

description of our proposed spatial effects framework of precipitation that is 

explained in the next section. Section. 3 presents the new modeling of 
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precipitation variations in detail. The experimental results and conclusions are 

presented in Sections. 4 and 5, respectively. 

Materials and methods 

Materials 

Iran, situated in the southwest of Asia, ranges from 25° 3' to 39° 47' N and 

from 44° 5' to 63° 18' E. The case study deals with the identification of 

geostatistics and spatial statistics effect on precipitation to better forecast the 

precipitation variations in Iran. Precipitation variations can be defined from 

various aspects, such as effectiveness of precipitation formation factors or even 

climatic events such as drought. With regard to precipitation changes in Iran, 

we chose rainfall indices, namely. The chosen indices were obtained from 

meteorological organization and included the monthly, seasonal and annual 

information of 140 stations and 37261 rainfall points in Iran for the period 1975-

2014 (Fig. 1). 

 

Figure1. Location of Stations  

In this study, the distribution of the 37261 rainfall points were evaluated 

with a digital elevation model (DEM) extracted from the ASTER-based global 

digital elevation model(Hayakawa, Oguchi, & Lin, 2008; Peña-Angulo, Brunetti, 

Cortesi, & Gonzalez-Hidalgo, 2016). All the observed precipitation data have 

been subject to strict quality control obtained from 

http://www.irimo.ir/englwd/720-Products-Services.html. The study focused on 

monthly, seasonal and annual variations. The rainfalls series includes 90% of 

primary and 10% of reconstructed series from stations at a correlation further 

than 0.7. Obviously individual station data varies, depending on the area and 

decade, with original data showing an increase in the 1981–2010 period. For this 
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purpose, a harmonic analysis was applied to all data, and data were studied 

with respect to the time defaults, normality, missing data, outliers etc. at 

different phases of the research.  

Methods 

This paper employs the geostatistical interpolation methods for comparing 

and investigating the variations in precipitation spatial patterns. The next 

subsections provide a brief introduction to these one algorithms to make this 

paper more reader-friendly and self-contained. The geostatistics interpolation 

methods include the following three steps: (Ahmadi & Sedghamiz, 2008; Arslan, 

2012; Babak, 2014; ESRI, 2014a; Hengl, 2009; Henley, 2012; Johnston, Ver 

Hoef, Krivoruchko, & Lucas, 2001; Pohlmann, 1993; Wu & Li, 2013): 

Geostatistical models for investigating the precipitation spatial 
variations: 

The geostatistical models include the following three steps: 

Exploratory of precipitation spatial patterns 

Before using the Geostatistical models, should explore rainfall using the 

exploratory precipitation spatial analysis tools (EPSAT). (Dumitrescu, Birsan, & 

Manea, 2015). Six different EPSAT methods were used: (1) the histogram plots, 

(2) the normal QQ plot, (3) the trend analysis tool, (4) the semivariograms / 

covariance cloud tool, (5) the Cross covariance cloud tool and (6) Prediction 

performances were assessed by cross-validation. With rainfall measurements 

done at 140 stations and 37260 rainfall points, according to ESRI (2014) the 

Quantile-quantile statistics (QQS) can be calculated using the following 

equation:   

( ) ( ) ( ),h Pr ,Z
p p

f p ob Z s z s h zé ù= £ + £ê úë û
   (1) 

where f(p, h) is the joint probability density function of Z(s) and Z(u) and 

Given a geostatistical model, Z(s), its variogram g(h). For each rainfall points, 

we delineated and analyzed the histogram, normal QQ plot, the trend analysis 

(Polemio & Lonigro, 2015), the semivariograms/covariance cloud (Jingyi Huang, 

Shi, & Biswas, 2015), the Cross covariance cloud and cross-validation using the 

methods described by ESRI. With rainfall measurements done at 140 stations 

and 37260 rainfall points, the semivariograms / covariance cloud equation is(I. 

B. Gundogdu, 2015):    

( )
( ) ( )

( )
2

1

1
( )

2

n h

i i

i

h Z x Z x h
n h =

é ùg = - +ë ûå   (2) 

where h is the distance separating sample locations xi and xi +h, n(h) is the 

number of distinct data pairs. In some circumstances, it may be desirable to 

consider direction in addition to distance. In an isotropic case, h should be 

written as a scalar h, representing magnitude. The Cross covariance cloud can 

be used to examine the local characteristics of spatial correlation between 

rainfall stations, and it can be used to look for spatial shifts in correlation 

between rainfall sets. A cross covariance cloud (Suparta & Rahman, 2016), with 
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rainfall points to predict the spatial variability as a function of the cross 

covariance, was estimated as follows: 

( )( ) ( )( )( , )
i j

CV t s Z s Z Y t Y= = - -  (3) 

where CV is the cross covariance locations xi and a geostatistical model, 

Z(si), its  forecast values ( Z ).Cross-validation uses all the stations and rainfall 

points to estimate the trend and autocorrelation models. Cross-validation 

indexes were estimated as follows: (Kisaka et al., 2015; Pereira, Oliva, & 

Misiune, 2015):    

( )
2

/
ii

MSE Z Z n*= -å     (4) 

( )
2

/
ii

RMSE Z Z n*= -å    (5) 

where 
jZ 

is the measured values at  locations and iZ  is the forecasted 

values at  locations.     

Explanation of Iran Monthly Precipitation 

The important explanation of the methods are to predict the relationship 

between rainfall series and rainfall points separately for each cell of the DEM, 

creating more significance to analysis  spatial variations with geographical 

features comparable to those of the cell patterns. Explanation of Iran monthly 

precipitation spatial variability techniques can be used to describe and model 

spatial patterns (variography), predict amounts at rainfall spatial distribution 

and variations and assess the patterns associated with a rainfall predicted value 

at the unmeasured locations. The analyses of model spatial patterns versus 

model temporal patterns show important distinctions between rainfall 

variability in Iran. Here we describe methods employed in the following: 

-In Inverse distance weighted (IDW) interpolation the rainfall points are 

weighted during interpolation such that the influence of one point relative to 

another decline with distance from the unknown point want to 

create(Barbulescu, 2015). To predict a value for any unmeasured points, IDW 

uses the measured values surrounding the predicted point. The measured values 

closest to the predicted point have more influence on the predicted value than 

those farther away. Inverse distance weighted was estimated as follows (Zhang, 

Vaze, Chiew, & Li, 2015):    

( )
1 1

ˆ ( ) /
n n

o i i i

i i

Z u z u w w
= =

= å å   (6) 

where Z is the measured values at locations and iw  is the weight for 

measured values at  locations.     

-The analysis of Iran monthly precipitation offers several types of kriging 

and Cokriging interpolation models, which are suitable for interpolation 

different types of data and have different underlying methods: 
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 1- Ordinary method: Ordinary method of the main issues concerning 

ordinary kriging is whether the assumption of a constant mean is reasonable. 

However, as a simple prediction method, it has remarkable flexibility 

(Paparrizos, Maris, & Matzarakis, 2016). According to ESRI (2014) the ordinary 

method can be calculated using the following equation:  

( )( )Z s s= m+ e   (7) 

where µ is an unknown constant and ɛ(s) is residuals at interpolation.   

Simple method: After predicting the mean value over a station, we want to 

predict the value of our underlying random function Z(x) at any arbitrary point 

in Iran. For simple kriging, because we assume that we know µ exactly, also 

know ε(s) exactly at the data locations(de Amorim Borges, Franke, da 

Anunciação, Weiss, & Bernhofer, 2015). According to ESRI (2014) simpler 

method can be calculated using the following equation:  

( )( )Z s s= m+ e      (8) 

Universal method: We want to introduce the spatial prediction method 

universal kriging, whose aim is to predict Z(s) at un-sampled places as well 

(Htwe, Brinkmann, & Buerkert, 2015). A second-order polynomial is the trend 

which is µ(s). If we forecasted data subtract the second-order polynomial from 

the original data, you obtain the errors, ε(s), which are assumed to be random. 

According to ESRI (2014) simpler method can be calculated using the following 

equation:  

( ) ( )( )Z s s s= m + e     (9) 

where µ is an unknown constant and ɛ(s) is residuals at interpolation.   

Indicator method: We want to introduce the spatial prediction method 

universal kriging, whose aim is to predict I(s) at un-sampled places as well. 

Indicator method the creation of binary series may be through the use of a 

threshold for continuous data, or it may be that the observed data is 0 or 

1(Barbulescu, 2015). Using binary variables, indicator kriging proceeds the same 

as ordinary kriging. A variable that is continuous can be made into a binary (0 

or 1) variable by choosing a threshold. In Geostatistical Analyst, if values are 

above the threshold, they become a 1, and if they are below the threshold, they 

become a 0. This method can be compared to ordinary kriging. As with ordinary 

kriging, you assume that ε(s) is autocorrelated. Notice that because the indicator 

variables are 0 or 1, the interpolations will be between 0 and 1, and predictions 

from indicator kriging can be interpreted as probabilities of the variable being 1 

or being in the class that is indicated by 1. If a threshold was used to create the 

indicator variable, the resulting interpolation map would show the probabilities 

of exceeding (or being under) the threshold (Mirzaei & Sakizadeh, 2015). With 

rainfall measurements done at 140 stations and 37260 rainfall points, the 

indicator method equation is (ESRI 2014):    

( )( )I s s= m+ e     (10) 

Probability method: Use probability kriging to produce a probability or 

standard error of indicators map. The rainfall points need to be sampled from a 

mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/00310000003s000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/003100000040000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/003100000048000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/00310000004n000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/00310000004r000000.htm
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climatic condition that is continuous spatially. Probability kriging can use either 

semivariograms or covariances (the mathematical forms used to express 

autocorrelation) and cross-covariances (the mathematical forms used to express 

cross-correlation). The Probability kriging function is calculated as follows (I. B. 

Gundogdu, 2015; Johnston et al., 2001): 

( ) ( )1 1
( )

t
I s I Z S C sé ù= > = m + eë û , ( )2 2

( )Z s s= m + e     (11) 

where µ2 is an unknown constant and ɛ2(s) is residuals at interpolation.   

Disjunctive method: In rainfall analysis, we can predict either the rainfall 

value itself or an indicator with disjunctive kriging. Disjunctive kriging requires 

the bivariate normality assumption and approximations to the functions the 

assumptions are difficult to verify, and the solutions are mathematically and 

computationally complicated (Dokou, Kourgialas, & Karatzas, 2015). We want to 

introduce the spatial prediction method Disjunctive kriging, whose aim is to 

predict g (Z(s)) at un-sampled places as well. The Disjunctive kriging function is 

calculated as follows(Haberlandt, 2007; Johnston et al., 2001; Pohlmann, 1993): 

( )( ) ( )( )
1

ˆ
n

o i i

i

g Z s f Z s
=

= å , ( )1
( )fZ s s= m + e ,   (12) 

where Z is the measured value at the location and  µ is an unknown 

constant and ɛ(s) is residuals at interpolation.   

 

Cokriging method: Cokriging uses rainfall on climatic pattern types. The 

rainfall variable of interest is Z1, and both autocorrelation for Z1 and cross-

correlations between Z1 and all other climatic period types are used to make 

better predictions(de Amorim Borges et al., 2015). We want to introduce the 

spatial prediction method Disjunctive kriging, whose aim is to predict Z1(s) at 

un-sampled places as well. The Cokriging function is calculated as follows(ESRI, 

2014b): 

( )1 1 1
( )Z s s= m + e , ( )2 2 2

( )Z s s= m + e    (13) 

Empirical Bayesian kriging (EBK) is a geostatistical interpolation method 

that interpolated the rainfall difficult aspects of spatially a valid kriging 

model(Baker, Kröger, Brooks, Smith, & Czarnecki, 2015). Other kriging methods 

in rainfall analysis require us to manually adjust parameters to receive accurate 

results, but EBK automatically calculates these parameters through a process of 

submitting and simulations(Mirzaei & Sakizadeh, 2015). Empirical Bayesian 

kriging also differs from other kriging methods of accounting for the error 

introduced by estimating the underlying semivariogram. We want to introduce 

the spatial prediction, Empirical Bayesian kriging, whose aim is to predict Z1 (s) 

at un-sampled places as well. The Empirical Bayesian kriging is calculated as 

follows(ESRI, 2014b; Goovaerts, 2005): 

( ) ( ) ( ) ( )é ù
ê úë û

g = l + - la a a a1
ebk

u u Z u u m     (14) 

mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/003100000036000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/00310000001m000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/00310000004r000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/00310000004t000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/00310000003m000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/00310000004t000000.htm
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where m is the population-weighted sample mean , λ (( )au ) is the weight 

assigned to the rate observed at location ( )au .  

Semivariograms/Covariance modeling: 

The semivariograms and covariance functions quantify the assumption 

that rainfall series nearby tend to be more similar than rainfall series in various 

stations that are further apart. Semivariograms and covariance both measure 

the strength of statistical correlation as a function of distance(de Amorim Borges 

et al., 2015). The process of modeling semivariograms and covariance functions 

fits a semivariograms or a covariance curve to rainfall series. In this paper is to 

achieve the best fit, and also incorporate our forecast of the rainfall series in the 

model. The model will then be used in rainfall variations predictions. When 

fitting a rainfall variation, explore for directional autocorrelation in every 

station. The sill, range, and nugget are the important characteristics of the 

modeling by using the semivariograms. The semivariograms, covariance and 

correlation functions are theoretical quantities that estimate them from rainfall 

series, using tool is called the empirical semivariograms, empirical covariance 

and correlation functions. The empirical semivariograms, empirical covariance 

and correlation functions are calculated as follows (Bohling, 2005; I. Gundogdu, 

2015; Oliver & Webster, 2015; Scheuerer & Hamill, 2015). Given a geostatistical 

model, Z(s), its variogram g(h) is formally defined as: 

Correlation function:      ( )
( )

=
s ´ s

+0

C h
R h

h

      (15) 

Covariance function:     

( )
( )

( ) ( )

æ ö
ç ÷ç ÷ç ÷ç ÷è ø

= ´ + - ´å a a +a =

1
01

n h

C h Z u Z u h m m
hn h

   (16) 

Semivariance function:  ( )
( )

( ) ( )

æ ö
ç ÷ç ÷ç ÷ç ÷è ø

a
é ù-ê úë û

g = +å a
a =

21

1
Z u

n h

h Z u h
n h

   

(17) 

where 0
m  and + h

m  are the means of the range values: 

( )
( )

æ ö
ç ÷ç ÷ç ÷ç ÷è ø

= å a
a =

1
0 1

n h

m Z u
n h

     (18)     
( )

( )

æ ö
ç ÷ç ÷ç ÷ç ÷è ø

+
+= å a

a =

1

1
h

h

n h

m Z u
n h

    

(19) 

and s 0  and +
s

h are the corresponding standard deviations: 

mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/003100000017000000.htm
mk:@MSITStore:c:/PROGRA~1/arcgis/DESKTO~1.3/Help/GEOSTA~1.CHM::/0031000000mq000000.htm
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21
0 01

n h

Z u m
n h

   (21) 

Where u is vector of spatial coordinates , z(u) is variable under 

consideration as a function of spatial location , h is lag vector representing 

separation between two spatial locations and z(u+h)is  lagged version of 

variable. If the empirical semivariograms continues increasing steadily beyond 

the global variance value, this is often indicative of a significant spatial trend in 

the series, resulting in a negative correlation between rainfall series separated 

by large lags. In this study, types of interpolation methods, including include 

inverse distance weighting (IDW), global polynomial interpolation (GPI), local 

polynomial interpolation (LPI), radial basis functions (RBF), ordinary kriging 

(OK), simple kriging (SK), universal kriging (UK), indicator kriging (IK), 

probability kriging (PK), disjunctive kriging (DK) and empirical Bayesian 

kriging (EBK), were used to analysis and forecasting precipitation spatial 

variations over Iran. These methods in format the Geostatistics wizard tool in 

ArcGIS10.3 were divided into two groups: deterministic (IDW, GPI, LPI and RBF) 

and geostatistical (OK, SK, UK, IK, PK, DK and EBK) methods(ESRI, 2014a). 

The basis for interpolations by both geostatistical and deterministic in this 

analysis procedures was a digital mosaic model of Iran which consists of regular 

cells or pixels of 44.2338 km2.The deterministic interpolation methods create 

37261 cells from rainfall points by taking spatial relationships functions that 

determine spatial extent of rainfall , whereas the geostatistical interpolation 

methods utilize spatial statistical functions that nature the spatial relationships 

among rainfall points and stations. Rainfall spatial variability was evaluated 

through semivariograms estimation, model fitting and comparison for each 

variable. The cross-validation index was used to check the analysis accuracy. 

Mean Square Error (MSE) and Root Mean Square Error (RMSE) indexes were 

the main criterion for deciding which fitted model was the best one for each 

monthly rainfall(Ford & Quiring, 2014; Yang, Xie, Liu, Ji, & Wang, 2015). 

Inverse distance weighting (IDW) method was used as an interpolation method 

that estimates precipitation values from a set of weighted sample points with 

measurement values (Babak, 2014; Wu & Li, 2013). In this paper it was two-

fold. Firstly, we aimed to determine the deterministic methods for rainfall data 

for application to wide climatic modelling in Iran. To investigate this, four 

different spatial interpolation methods were evaluated: IDW, GPI, LPI and RBF 

types. Secondly, we used geostatistical methods to compare values of the 

forecasted precipitation variations at different stations. We used cross validation 

of IDW to compare and evaluate the values of the monthly and seasonal 

precipitation variations at different methods. We used cross validation of 

interpolation methods, first, we can estimate that the value of a station rainfall 

is general values and is estimated by the value of its neighboring stations, as 

forecast values, then calculate the deviation (error values) between actual 

rainfall values and forecasted values. Evaluated indexes, mean square error 
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(MSE) and the root mean square error (RMSE) are estimated to assess the 

accuracy of the interpolation. Secondly, we can estimate that the values of 

forecasted rainfall and are estimated by the spatial least squares method, as 

forecast values. Various geostatistical interpolation types can be obtained from 

the linear model by applying the generalized least-squares estimation of the 

expected values. The type of kriging method depends on the model assumed for 

the expected values. Kriging methods depend on mathematical and statistical 

models. Kriging assumes that at least some of the precipitation spatial 

variations observed in natural conditions can be modeled by random processes 

with spatial autocorrelation, and require that the spatial autocorrelation be 

explicitly modeled. The geostatistical analysis offers several types of kriging, 

which are suitable for different types of data and have different underlying 

assumptions: Ordinary, Simple, Universal, Indicator, Probability, Disjunctive 

and Empirical Bayesian. Interpolation by ordinary kriging (OK) was the 

geostatistical method applied to these rainfall data. Kriging interpolation 

methods provide each cell with a local, optimal prediction and an estimation of 

the error that depends on the accuracy and on the spatial nature of the data.  

Results and discussion 

As pointed out, geostatistics interpolation methods study the variations of 

climatic variables or the elements which are not directly observable. These 

variations, patterns are measured by several models. Concerning the effects of 

temporal-spatial factors on precipitation, two indicators that is, geostatistical 

models and spatial models, were found to influence precipitation. In Iran, the 

best presenting models is for all time the EBK and OK, and the worst is the 

IDW. The results showed that IDW, OK, UK and EBK are the suitable methods 

with the least MSE (IDW=0.247, OK=0.137, UK=0.158 and EBK=0.0357) and 

RMSE (IDW=0.497, OK=0.37, UK=0.398 and EBK=0.189). The results proved 

that pointed methods were suitable for the estimation of rainfall variations at 

the studied level. Range annual rainfall during the study period varied from 

1537.095mm for UK method to 1764.98 mm for IDW method (OK=1537.95 and 

EBK=1753.144) for the Iran using interpolation methods. These values were 

different from those observed on the dataset. So, range monthly rainfall during 

the study period varied from 200.467 mm for IDW method in January to 208.93 

mm for OK method (UK=208.41mm and EBK=207.617 mm) for the Iran using 

interpolation methods. Range monthly rainfall during the study period varied 

from 224.44 mm for EBK method in February to 225.541 mm for IDW method 

(UK and OK=225.209 mm) for the Iran using interpolation methods. Range 

monthly rainfall during the study period varied from 263.27 mm for OK method 

in March to 264.71 mm for IDW method (UK=263. 276 mm and EBK=263. 63 

mm) for the Iran using interpolation methods. Range monthly rainfall during 

the study period varied from 147.075 mm for OK and UK methods in April to 

161.14 mm for IDW method (EBK=160 mm) for the Iran using interpolation 

methods. So, range monthly rainfall during the study period varied from 65.649 

mm for UK method in May to 71.17 mm for IDW method (OK=65. 65 mm and 

EBK=70. 6 mm) for the Iran using interpolation methods. Range monthly 

rainfall during the study period varied from 52.42 mm for UK method in June to 

57.489 mm for IDW method (OK=52. 44 mm and EBK=57. 01 mm) for the Iran 

using interpolation methods. Range monthly rainfall during the study period 

varied from 46.24 mm for IDW method in July to 46.75 mm for EBK method 
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(OK=46. 49 mm and UK=46. 48 mm) for the Iran using interpolation methods. 

Range monthly rainfall during the study period varied from 108.7 mm for UK 

method in August to 109.93 mm for EBK method (OK=108. 71 mm and 

IDW=108. 86 mm) for the Iran using interpolation methods. So, range monthly 

rainfall during the study period varied from 261.39 mm for OK and UK methods 

in September to 266.5 mm EBK method (IDW=263. 6 mm) for the Iran using 

interpolation methods. Range monthly rainfall during the study period varied 

from 315.6 mm for OK and UK methods in October to 320.46 mm for EBK 

method (IDW=317. 63 mm) for the Iran using interpolation methods. Range 

monthly rainfall during the study period varied from 244.7 mm for OK and UK 

methods in November to 295.28 mm for IDW method (EBK=293. 64 mm) for the 

Iran using interpolation methods and range monthly rainfall during the study 

period varied from 230.14 mm for IDW method in December to 231.26 mm for 

EBK method (OK and UK=231. 17 mm) for the Iran using interpolation 

methods. These values were different from those observed on the dataset. The 

results show in terms temporal-spatial a maximum variation in the months 

of November, April and January and minimum variability in the months of July 

and December. Therefore, for the all stations, the precipitation data under two 

scenarios are higher compared and similarity to the forecasted data in spatial-

temporal variations format in July and December and lower compared and 

similarity to the forecasted data in November, April and January. For the all 

stations, the results determine that the rainfall variations forecasted patterns in 

Iran match well with the observed data except for November, April and January. 

For the all stations, the results show that the rainfall variations forecasted 

patterns are higher than the observed data in November, April and January. As 

for the all stations and rainfall points, the results indicate that the spatial 

variation trend of the forecasted rainfall data are variety to those of simulation 

patterns by selective interpolation methods. The highest precipitation occurs in 

October, which was the extract the condition by selective interpolation methods. 

As for the all stations, the results indicate that the spatial variation trend 

ranges of the forecasted rainfall data are variety to those of simulation patterns 

by interpolation methods. The highest range of precipitation spatial variation 

trend occurs in April (44.295 mm), November (35.06) and October (33.528 mm), 

which was the extract the condition by interpolation methods and range lowest 

of precipitation spatial variation trend occurs in December (0.67 mm), July 

(5.587 mm) and February (6.035 mm), which was the extract the condition by 

selective interpolation methods. Therefore, for the all stations and rainfall 

points, the results determine that the rainfall variations forecasted trend 

patterns in Iran match well with the increasing observed south to north except 

for January and December (decreasing observed south to north). As, the 

simulated precipitation patterns by selective interpolation methods are higher 

than the observed ones during the autumn (818.992 mm) and winter (686.792 

mm) period. Therefore, for the all stations and rainfall points, the results 

determine that the rainfall variations forecasted trend patterns in Iran match 

well with the increasing forecasted trend in Caspian sea and western 

mountainous regions to south and east, south for autumn season and in the west 

and western south for the winter season and in north and western north for 

spring season (204.7 mm) and in Caspian sea for summer season (417.079 mm). 

Therefore, for the all stations and rainfall points, the results determine that 

rainfall seasons are autumn and winter over Iran and is spring rainfall season 
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for western north and is the summer rainfall season for the Caspian Sea beach. 

Nevertheless, the overall trends of simulation and forecast patterns are a very 

good match. Thus, the precipitation trend variation in Iran is well simulated and 

forecasted by selective interpolation methods. After the selective interpolation 

methods outputs were validated, the future precipitation trends of 140 stations 

and rainfall points could be forecasted for the period of 2014–2064 over Iran. On 

the basis of the future precipitation trends of 140 stations and 37261 rainfall 

points, four different interpolation methods, including IDW, OK, UK and EBK, 

were used for producing the monthly and seasonal precipitation trends over 

Iran. The results reveal that the precipitation spatial trends generated by UK, 

OK and EBK methods are similar but different from those produced by IDW. 

This is because interpolation methods may be exactly interpolators. On the other 

hand, the interpolation results were compared on the basis of cross-validated 

RMSE. As shown Fig2.  the RMSE for different methods are in the order 

EBK<OK<UK<IDW<PK<IK<DK<SK<RBF<GPI<LPI, indicating that the 

minimum RMSE is obtained by EBK,OK,UK and IDW, which is the  method for 

interpolating future precipitation trends over Iran. 

 

Figure 2. RMSE of Interpolation Methods (mm/month-1)          

 The monthly, seasonal and annual precipitation patterns created by the 

best interpolation method (EBK, OK, UK and IDW) were used to forecast spatial 

variations of future precipitation variations patterns over Iran. The results show 

that the monthly precipitation would be increasing gradually from south to 

north Iran in February, March, April, May, June, July, August, September, 

October and November and would be decreasing from north to south Iran for 

January and December. The range of precipitation trend would be for winter of 

48.16 to 180.053 mm season−1 (Fig.3).  
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Figure 3. Trend Predication of Winter Rainfall 

Thus, the Western North and West Iran would receive the highest 

seasonal precipitation (approximately 180.053 mm season−1), whereas the 

Eastern South and East Iran would receive the lowest one (about 48.16 mm 

season−1) over the period of 2014–2064 and range would be increased from 

Eastern South to Western North approximately 131.893 mm season−1. The 

range of precipitation trend would be for spring from 0.111 to 116.88 mm 

season−1 (Fig.4).  

  

Figure 4. Trend Predication of Spring Rainfall            

Thus, the Western North Iran would receive the highest seasonal 

precipitation (approximately 116.88 mm season−1), whereas the Eastern South 

Iran would receive the lowest one (about 0.111 mm season−1) over the period of 
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2014–2064 and range would be increased from Eastern South to Western North 

approximately 116.769 mm season−1. The range of precipitation trend would be 

for the summer from 0.0011 to 27.773 mm season−1 (Fig.5). 

 

Figure 5. Trend Predication of Summer Rainfall 

 Thus, the Western North Iran would receive the highest seasonal 

precipitation (approximately 27.773 mm season−1), whereas the Eastern South 

Iran would receive the lowest one (about 0.0011 mm season−1) over the period of 

2014–2064 and range would be increased from Eastern South to Western North 

approximately 27.77 mm season−1. The range of precipitation trend would be for 

autumn from 1.32 to 152.079 mm season−1 (Fig.6). 

  

Figure 6. Trend Predication of Autumn Rainfall      

 Thus, the Western North Iran would receive the highest seasonal 

precipitation (approximately 152.079 mm season−1), whereas the Eastern South 
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Iran would receive the lowest one (about 1.32 mm season−1) over the period of 

2014–2064 and range would be increased from Eastern South to Western North 

approximately 150.759 mm season−1. The range of precipitation trend would be 

for Annual from 55.791 to 477.222 mm year−1 (Fig.7).  

 

Figure 7. Trend Predication of Annual Rainfall 

Thus, the Western North Iran would receive the highest annual 

precipitation (approximately 477.222 mm year−1), whereas the Eastern South 

Iran would receive the lowest one (about 55.791 mm year−1) over the period of 

2014–2064 and range would be increased from Eastern South to Western North 

approximately 421.43 mm year−1. All stations showed precipitation over Iran 

varies spatially at an annual, seasonal and monthly level with statistically 

significant results concentrated mostly in the North and Western parts of the 

country. A regionalization analysis in monthly precipitation was to estimate the 

temporal-spatial patterns variations in precipitation. The stronger spatial 

variations, the lower precipitation in general in Iran, while weaker spatial 

variations mean larger precipitation in the country. The density of winter 

precipitation spatial distribution is in the South of Caspian Sea and some parts 

of the highlands in West to Eastern South of Iran the severe reduced 

distribution. Precipitation spatial patterns over Iran varies and the spring 

precipitation range forecast using Inverse Distance Weighting for the whole 

country is 195.98 mm over the investigated period that decreased from Northern 

and Western North to South and Eastern South in Iran. The density of spring 

precipitation spatial distribution is in the North and Western North. On the 

summer scale, using Inverse Distance Weighting, all of the stations showed 

range about 380.183 mm that decreased from North to South in Iran. The 

density of summer precipitation spatial distribution is in the Caspian Sea. The 

spatial distribution of precipitation in autumn using Inverse Distance Weighting 

showed the range about 688.73 mm that decreased toward center and south into 

Iran. The density of autumn precipitation spatial distribution is in the North of 

Iran (Caspian Sea) and some parts of the highlands. In terms, spatial variations 

are very similar to the winter and autumn precipitation distribution. In our 
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study, the highest percentage of precipitation variations spatially was observed 

in autumn and lowest in spring. 

Conclusions 

Using a Geostatistical interpolation method, especially one with a 

graphical - quantitative editor that allows the user to specify the model by 

drawing it on a curtain -it is quite easy to add precipitation for a geostatistical - 

spatial model. A primary purpose of our study was zoning temporal-spatial 

patterns variations in precipitation. Our other aim was to examine the variety of 

various geostatistical - spatial patterns. In this study, eleven geostatistical 

interpolation methods, were studied using monthly, seasonal and annual 

precipitation in Iran. 140 stations' and 37216 rainfall point precipitation was 

investigated using a geostatistical spatial model. Results indicated that there 

are various temporal-spatial variation patterns that affect precipitation in Iran. 

The findings also indicated that among the rainfall data which were influential 

on precipitation, seasonal then monthly and annual precipitation had the 

highest spatial variations in the rate of precipitation. The hypothesis for the 

spatial variability of the rainfall in Iran is also accepted. After all, the temporal-

spatial patterns affects the precipitation rate in Iran and the geostatistical 

interpolation methods, can show the magnitude of these variations on the 

precipitation rate changes and can well examine the variation patterns.  
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