
 
 
 

 

INTERNATIONAL JOURNAL OF ENVIRONMENTAL & SCIENCE EDUCATION 
e-ISSN: 1306-3065 

2018, Vol. 13, No. 2, 201-209 

 

 
Article History: Received 11 November 2017  Revised 29 December 2017  Accepted 22 February 2018 
 
© 2018 The Author(s). Open Access terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/) apply. The license permits unrestricted use, distribution, and reproduction in 
any medium, on the condition that users give exact credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if they made any changes. 
 
 
 

OPEN ACCESS 

Investigation and Evaluation of Operational Matrix in Order to 
Solve the Partial Differential Equation 

Mehrzad Ghorbani 1* 

1 College of Basic Sciences, Qom University of Technology (QUT), Qom, IRAN 
 
* CORRESPONDENCE:  mehrzadghorbany@yahoo.com  

 
ABSTRACT 
We need differential equations for modeling and analyzing a huge amount of issues. Fractional 
calculus is a branch of mathematical analysis that is used in many fields of mathematical and 
engineering sciences such as electrical networks, fluid mechanics, control theory, 
electromagnetism, biology, chemistry, propagation and viscoelasticity. The most important topics 
in mathematics are differential equations and integral equations which are very practical and have 
a special place in various sciences, especially engineering sciences. We used approximate methods 
to obtain the results because we cannot use analytical clustering for this kind of equations. The 
aim of this paper is to investigate the operational matrix in order to solve the partial differential 
equation. 
 
Keywords: differential equations, operating matrix, minor derivatives, gamma function, integral 
equations, special functions, fractional problems 

 

INTRODUCTION 
Fractional Calculus gained great interest in the researchers’ community due to its wide applications in 

several branches of Applied Mathematics and Sciences. Many dynamical systems can be described in a more 
precise way by using fractional order differential equations, due to the nonlocal nature of fractional derivative. 
Hence in many cases such equations appear as important alternatives for integer order differential equations. 
Various natural systems in the fields such as viscoelasticity, electrical circuits and nonlinear oscillations of 
earthquake show an intermediate behavior which can only be modeled using fractional order differential 
equations. The numerical methods for solving these equations includes Laplace transforms, serial power 
method, Fourier transforms, Special vector expansion, Adomian split method, Repeat change method, 
Fractional transformation method, Fractional difference method, Homotopy analysis method, Operational 
matrix method, Generalized transformation method, Time discretization method and other methods. The 
purpose of solving a problem of differential equations by partial derivatives is solving an equation that is true 
in some physical conditions. If the physical condition of the problem is a primary (original), then this problem 
is called the initial value problem. 

If the physical condition of the problem is of a boundary type, the problem is primary and if the problem is 
boundary type, then it is called the boundary-primary problem. Several fundamental investigations have been 
made on deficit differential equations and fractional derivatives. These studies are described as introductions 
or descriptions for the theory of fractional derivatives and differential deficit equation. It is important to find 
the exact or approximate answer for differential equations but, except for a limited number of these equations, 
finding an analytic solution is difficult or impossible. Also, so far numbers of numerical methods have been 
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considered for solving differential deficit equations, such as Adomian decomposition methods, homotopy 
decomposition method, and repetitive method. Spectral methods have provided a powerful tool for solving 
many of the differential equations in the fields of science and engineering. Here, the high precision and ease 
of use of these methods are two effective features which encourage many researchers to use them in various 
equations. Certain types of spectral methods which are more practical include Galerkin method, Spatial 
method, and Taoist methods. A. Saadatmandi (2014) and M. Dehghan, S. Abdi-mazraeh & M. Lakestani (2014) 
introduced the transmitted Legendre operational matrix for fraction derivatives and used it with methods and 
spectra for linear and nonlinear deficit differential equations, depend on the initial conditions. Recently, 
Bahravi et al., used the translated Chebyshev polynomials for multivariate linear differential equations with 
variable coefficients. Also, Ismaili proposed a computational technique based on the spatial method and the 
Manse polynomials for solving differential deficit equations. The aim of this paper is the introduction of the 
matrix of Jacobi polynomials transmitted for fraction derivatives which is based on spectral methods for 
solving differential equations of linear and nonlinear fractions with initial or boundary conditions. 

Preliminaries and Notations 

Definition: The Riemann-Liouville deficit integral of 𝛼𝛼 is defined as follows: 

 𝐼𝐼𝛼𝛼𝑓𝑓(𝑥𝑥) =
1

𝛤𝛤(𝛼𝛼)� (𝑥𝑥 − 𝑡𝑡)𝛼𝛼−1𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 =
1

𝛤𝛤(𝛼𝛼) 𝑥𝑥
𝛼𝛼−1 ∗ 𝑓𝑓(𝑥𝑥)

𝑥𝑥

0
                 𝑥𝑥 ∈ 𝛺𝛺, 𝐼𝐼0𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)  

where 𝛤𝛤 is the Gamma function and ∗ is convolution multiplication. For the 𝐼𝐼𝛼𝛼  operator, the following equations 
are established: 

 
𝐼𝐼𝛼𝛼(𝑥𝑥 − 𝑎𝑎)𝛽𝛽 =

𝛤𝛤(𝛽𝛽 + 1)
𝛤𝛤(𝛼𝛼 + 𝛽𝛽 + 1) (𝑥𝑥 − 𝛼𝛼)𝛼𝛼+𝛽𝛽 , 𝛼𝛼 ≥ 0,𝛽𝛽 > −1, 

𝐼𝐼𝛼𝛼 �𝐼𝐼𝛽𝛽𝑓𝑓(𝑥𝑥)� = 𝐼𝐼𝛼𝛼+𝛽𝛽𝑓𝑓(𝑥𝑥) = 𝐼𝐼𝛽𝛽�𝐼𝐼𝛼𝛼𝑓𝑓(𝑥𝑥)�. 
 

Definitions and Introductory Theorems 

Definition: Any equation that contains an associated variable and its derivatives relative to one or more 
independent variables is called a differential equation. 

Differential equations are divided into two general categories: 
Ordinary differential equations (ODEs) 
Partial Differential equations (PDEs) 
Each differential equation, which contains a function of two or more variables and derivatives of a function 

relative to independent variables, is called a partial differential equation.  
Definition: The right side and the left Liouville fraction integral (𝛼𝛼 ≥ 0) of 𝑢𝑢(𝑥𝑥) are defined by the 

following equations: 

 𝐼𝐼+𝛼𝛼𝑢𝑢(𝑡𝑡) =
1

𝛤𝛤(𝛼𝛼)�𝑢𝑢(𝜉𝜉)(𝑥𝑥 − 𝜉𝜉)𝛼𝛼−1𝑑𝑑𝜉𝜉
𝑥𝑥

0

, 𝛼𝛼 > 0, 0 < 𝑥𝑥 < 𝐿𝐿,  

 𝐼𝐼−𝛼𝛼𝑢𝑢(𝑡𝑡) =
1

𝛤𝛤 (𝛼𝛼)�𝑢𝑢(𝜉𝜉)(𝜉𝜉 − 𝑥𝑥)𝛼𝛼−1𝑑𝑑𝜉𝜉
𝐿𝐿

𝑥𝑥

, 𝛼𝛼 > 0, 0 < 𝑥𝑥 < 𝐿𝐿,  

 𝐼𝐼∓
0𝑢𝑢(𝑡𝑡) = 𝑢𝑢(𝑥𝑥).  

The I∓𝛼𝛼 operator is defined as follows: 

 𝐼𝐼+𝛼𝛼𝑥𝑥𝑖𝑖 =
𝛤𝛤(𝑖𝑖 + 1)

𝛤𝛤(𝑖𝑖 + 1 + 𝛼𝛼) 𝑥𝑥
𝑖𝑖+1,  

 𝐼𝐼−𝛼𝛼(𝑥𝑥 − 𝐿𝐿)𝑖𝑖 =
(−1)𝑖𝑖𝛤𝛤(𝑖𝑖 + 1)
𝛤𝛤(𝑖𝑖 + 1 + 𝛼𝛼) (𝐿𝐿 − 𝑥𝑥)𝑖𝑖+𝛼𝛼 .  
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Definition: The right and left derivatives of the Riemann-Liouville deficit integral of α are defined as 
follows 

 𝐷𝐷∗+𝛼𝛼 𝑢𝑢(𝑥𝑥) =
1

𝛤𝛤(𝑛𝑛 − 𝛼𝛼)
𝑑𝑑𝑛𝑛

𝑑𝑑𝑥𝑥𝑛𝑛 �
𝑢𝑢(𝜉𝜉)

(𝑥𝑥 − 𝜉𝜉)𝛼𝛼−𝑛𝑛+1 𝑑𝑑𝜉𝜉
𝑥𝑥

0

,  

 𝐷𝐷∗+𝛼𝛼 𝑢𝑢(𝑥𝑥) =
(−1)𝑛𝑛

𝛤𝛤(𝑛𝑛 − 𝛼𝛼)
𝑑𝑑𝑛𝑛

𝑑𝑑𝑥𝑥𝑛𝑛 �
𝑢𝑢(𝜉𝜉)

(𝜉𝜉 − 𝑥𝑥)𝛼𝛼−𝑛𝑛+1 𝑑𝑑𝜉𝜉
𝐿𝐿

𝑥𝑥

.  

For 𝑛𝑛 − 1 < 𝛼𝛼 ≤ 𝑛𝑛, 𝑛𝑛 ∈ 𝑁𝑁, 𝑛𝑛 is the smallest integer number that is larger than 𝛼𝛼. 
Definition: The derivatives of the right and left of Caputo-Dzherbashyn function of 𝛼𝛼 are as follows: 

 𝐷𝐷+𝛼𝛼𝑢𝑢(𝑥𝑥) =
1

𝛤𝛤(𝑛𝑛 − 𝛼𝛼)�
𝑢𝑢(𝑛𝑛)(𝜉𝜉)

(𝑥𝑥 − 𝜉𝜉)𝛼𝛼−𝑛𝑛+1 𝑑𝑑𝜉𝜉
𝑥𝑥

0

,  

 𝐷𝐷−𝛼𝛼𝑢𝑢(𝑥𝑥) =
(−1)𝑛𝑛

𝛤𝛤(𝑛𝑛 − 𝛼𝛼)�
𝑢𝑢(𝑛𝑛)(𝜉𝜉)

(𝜉𝜉 − 𝑥𝑥)𝛼𝛼−𝑛𝑛+1 𝑑𝑑𝜉𝜉
𝐿𝐿

𝑥𝑥

.  

The 𝐷𝐷∓𝛼𝛼 operator is true in following equation: 

 𝐷𝐷∓
𝛼𝛼𝐽𝐽∓

𝛼𝛼𝑢𝑢(𝑥𝑥) = 𝑢𝑢(𝑥𝑥),  

 𝐷𝐷∓
𝛼𝛼𝐽𝐽∓

𝛼𝛼𝑢𝑢(𝑥𝑥) = 𝑢𝑢(𝑥𝑥) − � 𝑢𝑢(𝑖𝑖)(𝑂𝑂+)
𝑥𝑥𝑖𝑖

𝑖𝑖! ,
[𝛼𝛼]−1

𝑖𝑖=0

  

 𝐷𝐷+𝛼𝛼𝑥𝑥𝑖𝑖 = �
0, for 𝑖𝑖 ∈ 𝑁𝑁0 and 𝑖𝑖 < ⌈𝛼𝛼⌉

𝛤𝛤(𝑖𝑖 + 1)
𝛤𝛤(𝑖𝑖 + 1 − 𝛼𝛼) 𝑥𝑥

𝑖𝑖−𝛼𝛼 , for 𝑖𝑖 ∈ 𝑁𝑁0 and 𝑖𝑖 ≥ ⌈𝛼𝛼⌉  

 𝐷𝐷∓
𝛼𝛼�ɛ𝜓𝜓(𝑥𝑥) + 𝜖𝜖ɸ(𝑥𝑥)� = ɛ𝐷𝐷∓

𝛼𝛼ɸ(𝑥𝑥)𝜓𝜓(𝑥𝑥) + 𝜖𝜖𝐷𝐷∓
𝛼𝛼  ɸ(𝑥𝑥).  

ɛ and 𝜖𝜖 are the constants which have been defined as follow: 

 𝐷𝐷−𝛼𝛼(𝑥𝑥 − 𝐿𝐿)𝑖𝑖 = �
0, for 𝑖𝑖 ∈ 𝑁𝑁0 and 𝑖𝑖 < ⌈𝛼𝛼⌉

(−1)𝑖𝑖𝛤𝛤(𝑖𝑖 + 1)
𝛤𝛤(𝑖𝑖 + 1 − 𝛼𝛼) (𝐿𝐿 − 𝑥𝑥)𝑖𝑖−𝛼𝛼 , for 𝑖𝑖 ∈ 𝑁𝑁0 and 𝑖𝑖 ≥ ⌈𝛼𝛼⌉

  

where, ⌈∗⌉ is the ceiling function and 𝑁𝑁0 = {0,1,2, … }. 
Definition: The Riesz fractional derivatives of order 𝛼𝛼 of 𝑢𝑢(𝑥𝑥) is defined as 

 
𝜕𝜕𝛼𝛼

𝜕𝜕|𝑥𝑥|𝛼𝛼 𝑢𝑢
(𝑥𝑥, 𝑡𝑡) = −𝐶𝐶𝛼𝛼 (𝐷𝐷∗𝛼𝛼 + 𝑢𝑢(𝑥𝑥, 𝑡𝑡) + 𝐷𝐷∗𝛼𝛼 − 𝑢𝑢(𝑥𝑥, 𝑡𝑡))  

where, 

 𝐶𝐶𝛼𝛼 =
1

2 cos𝜋𝜋𝛼𝛼2
 ,𝛼𝛼 ≠ 1.  

Definition: assume that 𝐵𝐵(𝐷𝐷𝐸𝐸) is 𝜕𝜕𝜕𝜕𝜕𝜕 functions of rank 𝐹𝐹, then in 𝐷𝐷𝐸𝐸: 

 � |𝐹𝐹(𝑧𝑧)𝑑𝑑𝑧𝑧|
 

𝜓𝜓(𝑡𝑡+𝑙𝑙)
→ 0, 𝑡𝑡 → ±∞  

 𝐿𝐿 = �𝑖𝑖𝑖𝑖: |𝑖𝑖| < 𝑑𝑑 ≤
𝜋𝜋
2�,  

Since 𝐷𝐷𝐸𝐸 is bounded, then: 

 𝑁𝑁(𝐹𝐹) = � |𝐹𝐹(𝑧𝑧)𝑑𝑑𝑧𝑧|
 

𝜕𝜕𝐷𝐷𝐸𝐸
< ∞  

Definition: a 𝑚𝑚-function of block-pulse is defined as follow: 

 𝜙𝜙𝑖𝑖(𝑡𝑡) = �1,
𝑖𝑖𝑖𝑖
𝑚𝑚 ≤ 𝑡𝑡 <

(𝑖𝑖 + 1)𝑖𝑖
𝑚𝑚

0, otherwise.
  

where, 𝑖𝑖 = 0,1, … ,𝑚𝑚 − 1, with a positive integer value for 𝑚𝑚, 𝑖𝑖 = 1 and BPFS for each [0,1) is equal ℎ = 1/𝑚𝑚.  
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According to the definition of BPFS: 

 𝜙𝜙𝑖𝑖(𝑡𝑡)𝜙𝜙𝑗𝑗(𝑡𝑡) = 𝑓𝑓(𝑥𝑥) = �𝜙𝜙𝑖𝑖
(𝑡𝑡), 𝑖𝑖 = 𝑗𝑗

0, 𝑖𝑖 ≠ 𝑗𝑗.  

and 𝑖𝑖, 𝑗𝑗 = 0,1, … ,𝑚𝑚 − 1. 
The other property is orthogonality. It is clear that 

 � 𝜙𝜙𝑖𝑖(𝑡𝑡)𝜙𝜙𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡 = ℎ 𝛿𝛿𝑖𝑖𝑗𝑗
1

0
,  

where 𝛿𝛿𝑖𝑖𝑗𝑗 is the Kronecker delta. 

The third property is completeness. For every 𝑓𝑓 ∈ ℒ2�[0,1)�, when 𝑚𝑚 approaches to the infinity, Parseval’s 
identity holds: 

 � 𝑓𝑓2(𝑡𝑡)𝑑𝑑𝑡𝑡 = �𝑓𝑓𝑖𝑖2||𝜙𝜙𝑖𝑖(𝑡𝑡)|| 2
∞

𝑖𝑖=1

1

0
,  

 𝑓𝑓𝑖𝑖 =
1
ℎ� 𝑓𝑓(𝑡𝑡)𝜙𝜙𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡.

1

0
  

Theorem: let 𝜙𝜙𝐿𝐿,𝑀𝑀(𝑡𝑡) be the shifted Jacobi vector defined in Eq. 

Then the left-sided Caputo fractional derivative of order 𝑖𝑖 > 0 of 𝜙𝜙𝐿𝐿,𝑀𝑀(𝑡𝑡) can be expressed as 

 𝐷𝐷+𝑣𝑣𝜙𝜙𝐿𝐿,𝑀𝑀(𝑥𝑥) ≅ 𝐷𝐷+
(𝑣𝑣)𝜙𝜙𝐿𝐿,𝑀𝑀(𝑥𝑥)  

where 𝐷𝐷+
(𝑣𝑣) is the (𝑀𝑀 + 1) × (𝑀𝑀 + 1) Jacobi operational of the left sided-fractional derivatives of order 𝑖𝑖 in the 

Caputo sense, and it is defined as follows: 

 𝐷𝐷+
(𝑣𝑣) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 0

𝑆𝑆𝑣𝑣+(⌈𝑖𝑖⌉, 0) 𝑆𝑆𝑣𝑣+(⌈𝑖𝑖⌉, 1) 𝑆𝑆𝑣𝑣+(⌈𝑖𝑖⌉, 2) ⋯ 𝑆𝑆𝑣𝑣+(⌈𝑖𝑖⌉,𝑀𝑀)
⋮ ⋮ ⋮ ⋯ ⋮

𝑆𝑆𝑣𝑣+(𝑖𝑖, 0) 𝑆𝑆𝑣𝑣+(𝑖𝑖, 1) 𝑆𝑆𝑣𝑣+(𝑖𝑖, 2) ⋯ 𝑆𝑆𝑣𝑣+(𝑖𝑖,𝑀𝑀)
⋮ ⋮ ⋮ ⋯ ⋮

𝑆𝑆𝑣𝑣+(𝑀𝑀, 0) 𝑆𝑆𝑣𝑣+(𝑀𝑀, 1) 𝑆𝑆𝑣𝑣+(𝑀𝑀, 2) ⋯ 𝑆𝑆𝑣𝑣+(𝑀𝑀,𝑀𝑀) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 

𝑆𝑆𝑣𝑣+(𝑖𝑖, 𝑗𝑗)

=  �
(−1)𝑖𝑖−𝑘𝑘𝛤𝛤(𝑖𝑖 + 𝜗𝜗 + 1)𝛤𝛤(𝑖𝑖 + 𝑘𝑘 + 𝜃𝜃 + 𝜗𝜗 + 1)𝛤𝛤(𝜃𝜃 + 1)𝐿𝐿−𝑣𝑣

𝛤𝛤(𝑘𝑘 + 𝜗𝜗 + 1)𝛤𝛤(𝑖𝑖 + 𝜃𝜃 + 𝜗𝜗 + 1)(𝑖𝑖 − 𝑘𝑘)!𝛤𝛤(𝑘𝑘 − 𝑖𝑖 + 1)

𝑖𝑖

𝑘𝑘=⌈𝑣𝑣⌉

× �
(−1)𝑖𝑖−𝑠𝑠𝛤𝛤(𝑗𝑗 + 𝑠𝑠 + 𝜃𝜃 + 𝜗𝜗 + 1)𝛤𝛤(𝑠𝑠 + 𝑘𝑘 + 𝜗𝜗 − 𝑖𝑖 + 1)(2𝑗𝑗 + 𝜃𝜃 + 𝜗𝜗 + 1)𝑗𝑗!

𝛤𝛤(𝑗𝑗 + 𝜃𝜃 + 1)𝛤𝛤(𝑠𝑠 + 𝜗𝜗 + 1)(𝑗𝑗 − 𝑠𝑠)! 𝑠𝑠!𝛤𝛤(𝑠𝑠 + 𝑘𝑘 + 𝜃𝜃 + 𝜗𝜗 − 𝑖𝑖 + 2)

𝑗𝑗

𝑠𝑠=0

 

 

Note that in 𝐷𝐷+
(𝑣𝑣), the first ⌈𝑖𝑖⌉ rows, are all zeros. 

Lemma: the left and right-sided Caputo fractional derivatives are defined via the Riemann-Liouville 
fractional: 

 𝐷𝐷+𝛼𝛼𝑢𝑢(𝑥𝑥) = 𝐷𝐷∗+𝛼𝛼 𝑢𝑢(𝑥𝑥) − �
𝑢𝑢(𝑖𝑖)(0)

𝛤𝛤(𝑖𝑖 + 1 − 𝛼𝛼) 𝑥𝑥
𝑖𝑖−𝛼𝛼 ,

⌈𝛼𝛼⌉−1

𝑖𝑖=0

  

 𝐷𝐷−𝛼𝛼𝑢𝑢(𝑥𝑥) = 𝐷𝐷∗−𝛼𝛼 𝑢𝑢(𝑥𝑥) − �
(−1)𝑖𝑖𝑢𝑢(𝑖𝑖)(𝐿𝐿)
𝛤𝛤(𝑖𝑖 + 1 − 𝛼𝛼) (𝐿𝐿 − 𝑥𝑥)𝑖𝑖−𝛼𝛼 ,

⌈𝑣𝑣⌉−1

𝑖𝑖=0

  

Therefore, if function 𝑢𝑢(𝑥𝑥) satisfies 𝑢𝑢(𝑘𝑘)(0) = 0, 𝑘𝑘 = 0,1, … , ⌈𝑖𝑖⌉ − 1 then D+
𝛼𝛼𝑢𝑢(𝑥𝑥) and D∗+

𝛼𝛼 𝑢𝑢(𝑥𝑥) are equivalent. 
Theorem: If 𝜙𝜙′𝐹𝐹 ∈ 𝐵𝐵(𝐷𝐷𝐸𝐸) then for all 𝑥𝑥 ∈ 𝛤𝛤 

 �𝐹𝐹(𝑥𝑥) − � 𝐹𝐹(𝑥𝑥𝑘𝑘)𝑆𝑆(𝑘𝑘, ℎ)𝑜𝑜𝜙𝜙 (𝑥𝑥)
∞

𝑘𝑘=−∞

� ≤
𝑁𝑁(𝐹𝐹𝜙𝜙′)

2𝜋𝜋𝑑𝑑 sinh �𝜋𝜋𝑑𝑑ℎ �
≤

2𝑁𝑁(𝐹𝐹𝜙𝜙′)
𝜋𝜋𝑑𝑑 𝑒𝑒−𝜋𝜋𝜋𝜋/ℎ  
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Moreover, if 𝐹𝐹(𝑥𝑥) ≤ 𝐶𝐶𝑒𝑒−∝|𝜙𝜙(𝑥𝑥)|, 𝑥𝑥 ∈ 𝛤𝛤, for some positive constants 𝐶𝐶 and 𝛼𝛼, and if the selection ℎ = �𝜋𝜋𝑑𝑑/𝛼𝛼𝑁𝑁 ≤
2𝜋𝜋𝑑𝑑/ ln 2, then 

 �𝐹𝐹(𝑥𝑥) − � 𝐹𝐹(𝑥𝑥𝑘𝑘)𝑆𝑆(𝑘𝑘, ℎ)𝑜𝑜𝜙𝜙 (𝑥𝑥)
𝑁𝑁

𝑘𝑘=−𝑁𝑁

� ≤ 𝐶𝐶2√𝑁𝑁 exp�−√𝜋𝜋𝑑𝑑𝛼𝛼𝑁𝑁� , 𝑥𝑥 ∈ 𝛤𝛤,  

where 𝐶𝐶2  depends on 𝐹𝐹, 𝑑𝑑 and 𝛼𝛼. 
Theorem: assume that, 𝑓𝑓, 𝑓𝑓𝑚𝑚 are the exact and approximate solution of equation (1), respectively. Also, 

suppose that the function 𝑊𝑊(𝑓𝑓) holds in the Liepschitz condition which means for 𝐿𝐿 ≥ 0: 

 �𝑊𝑊�𝑓𝑓1(𝑥𝑥)� −𝑊𝑊�𝑓𝑓2(𝑥𝑥)�� ≤ 𝐿𝐿|𝑓𝑓1(𝑥𝑥) − 𝑓𝑓2(𝑥𝑥)|,𝑥𝑥 ∈ 𝛺𝛺  
Also, assume that 

 ‖𝑎𝑎𝑘𝑘‖∞ ≤ 𝑁𝑁𝑘𝑘 , 𝑘𝑘 = 0,1, … , 𝑟𝑟, and  

 �
𝑁𝑁𝑘𝑘𝑖𝑖𝛼𝛼−𝛽𝛽𝑘𝑘

𝛤𝛤(𝛼𝛼 − 𝛽𝛽𝑘𝑘 + 1) +
𝐿𝐿𝑁𝑁0𝑖𝑖𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) < 1.
𝑟𝑟

𝑘𝑘=1

  

 𝐸𝐸𝑚𝑚 = ‖𝑓𝑓 − 𝑓𝑓𝑚𝑚‖∞ ≤
𝑀𝑀𝑖𝑖𝛼𝛼ℎ3

9√3 𝛤𝛤(𝛼𝛼 + 1) �1 − ∑ 𝑁𝑁𝑘𝑘𝑖𝑖𝛼𝛼−𝛽𝛽𝑘𝑘
𝛼𝛼 − 𝛽𝛽𝑘𝑘 + 1

𝑟𝑟
𝑘𝑘−1 + 𝐿𝐿𝑁𝑁0𝑖𝑖𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1)�
  

where, 𝑀𝑀 is the upper bound of �𝑖𝑖(3)�∞. 

METHODOLOGY 
Assume the following function 

 𝑢𝑢(𝑥𝑥) = 𝑦𝑦(𝑥𝑥) + (𝑎𝑎 − 𝑏𝑏)𝑥𝑥 − 𝑎𝑎.  
Therefore we consider the following Bagley-Torvik equation 

 𝐴𝐴1𝑢𝑢(2) + 𝐴𝐴2𝑢𝑢
(32) + 𝐴𝐴3𝑢𝑢 = 𝑔𝑔(𝑥𝑥),  𝑥𝑥 ∈ [0,1],  

So, by taking account the boundedness condition: 
 𝑢𝑢(0) = 0,    𝑢𝑢(1) = 0,  

and 
 𝑔𝑔(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) +  𝐴𝐴3�(𝑎𝑎 − 𝑏𝑏)𝑥𝑥 − 𝑎𝑎�  

Now, we approximate solution for 𝑢𝑢(𝑥𝑥), in Eq 

 𝑢𝑢(𝑥𝑥) = 𝑢𝑢𝑀𝑀(𝑥𝑥) = � 𝑢𝑢𝑘𝑘𝑆𝑆𝑘𝑘(𝑥𝑥)
𝑁𝑁

𝑘𝑘=−𝑁𝑁
,  

where, 𝑢𝑢𝑘𝑘 = 𝑢𝑢(𝑥𝑥𝑘𝑘) and 𝑀𝑀 = 2𝑁𝑁 + 1. It is worth pointing out that 𝑢𝑢𝑀𝑀(𝑥𝑥) = 0 when 𝑥𝑥 tends to 0 or 1.  
Therefore 

 
𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑆𝑆(𝑘𝑘,ℎ)𝑜𝑜𝜙𝜙(𝑥𝑥)] = 𝜙𝜙′(𝑥𝑥)
𝑑𝑑
𝑑𝑑𝜙𝜙 [𝑆𝑆(𝑘𝑘, ℎ)𝑜𝑜𝜙𝜙(𝑥𝑥)]  

Thus, using aforementioned Equation we get 

 𝑑𝑑
𝑑𝑑𝑥𝑥 𝑆𝑆𝑘𝑘 � 𝑥𝑥=𝑥𝑥, =  

1
ℎ𝜙𝜙′(𝑥𝑥𝑗𝑗)𝛿𝛿𝑘𝑘𝑗𝑗

(1).  

Similarly, we will calculate the second derivative: 

 𝑑𝑑
𝑑𝑑𝑥𝑥 𝑆𝑆𝑘𝑘

(𝑥𝑥) � 𝑥𝑥=𝑥𝑥, =  
1
ℎ𝜙𝜙῎�𝑥𝑥𝑗𝑗�𝛿𝛿𝑘𝑘𝑗𝑗

(1) +
1
ℎ2 [𝜙𝜙′(𝑥𝑥𝑗𝑗)]2𝛿𝛿𝑘𝑘𝑗𝑗

(2)  
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The second-order derivative 𝑥𝑥𝑗𝑗 is obtained from the following relationships: 

 𝑢𝑢′𝑀𝑀�𝑥𝑥𝑗𝑗� =  � 𝑢𝑢𝑘𝑘 �
1
ℎ𝜙𝜙′(𝑥𝑥𝑗𝑗)𝛿𝛿𝑘𝑘𝑗𝑗

(1)�
𝑁𝑁

𝑘𝑘=−𝑁𝑁

,  

 𝑢𝑢῎𝑀𝑀�𝑥𝑥𝑗𝑗� =  � 𝑢𝑢𝑘𝑘 �
1
ℎ 𝜙𝜙῎�𝑥𝑥𝑗𝑗�𝛿𝛿𝑘𝑘𝑗𝑗

(1) +
1
ℎ2 [𝜙𝜙′(𝑥𝑥𝑗𝑗)]2𝛿𝛿𝑘𝑘𝑗𝑗

(2)�
𝑁𝑁

𝑘𝑘=−𝑁𝑁

.  

Operational Matrix 

To calculate the operator ∫ 𝜑𝜑𝑖𝑖(𝜏𝜏)𝑡𝑡
0 , we use the following equation: 

 � 𝜑𝜑𝑖𝑖(𝜏𝜏)
𝑡𝑡

0
𝑑𝑑𝑡𝑡 = �

0, 𝑡𝑡 < 𝑖𝑖ℎ
𝑡𝑡 − 𝑖𝑖ℎ, 𝑖𝑖ℎ ≤ 𝑡𝑡 < (𝑖𝑖 + 1)ℎ
ℎ, (𝑖𝑖 + 1)ℎ ≤ 𝑡𝑡 < 1.

  

The variable 𝑡𝑡 − 𝑖𝑖ℎ is equal to ℎ/2 in [𝑖𝑖ℎ, (𝑖𝑖 + 1)]. The approximation of 𝑡𝑡 − 𝑖𝑖ℎ for 𝑖𝑖ℎ ≤ 𝑡𝑡 ≤ (𝑖𝑖 + 1) is equal to 
ℎ/2. The operator ∫ 𝜑𝜑𝑖𝑖(𝜏𝜏)𝑡𝑡

0  is obtained from BPFs: 

 � 𝜑𝜑𝑖𝑖(𝜏𝜏)
𝑡𝑡

0
𝑑𝑑𝑡𝑡 ≃ � 0 … 0 ℎ

2 ℎ ⋯ ℎ�ф𝑡𝑡,  

The component 𝑖𝑖𝑡𝑡ℎ in ℎ/2 is equal to: 

 � 𝜙𝜙𝑖𝑖(𝜏𝜏)
𝑡𝑡

0
𝑑𝑑𝑡𝑡 ≃ 𝑃𝑃𝜙𝜙(𝑡𝑡)  

𝑃𝑃𝑚𝑚×𝑚𝑚 is an Operational Matrix as follows: 

 𝑃𝑃 =
ℎ
2

⎝

⎜
⎛

1 2 2 ⋯ 2
0 1 2 ⋯ 2
0 0 1 ⋯ 2
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1⎠

⎟
⎞

  

Block-pulse Function 
Definition: an 𝑚𝑚-set of BPFs is defined over a real interval [0,𝐻𝐻) as 

 𝜙𝜙𝑖𝑖(𝑡𝑡) = �1,
𝑖𝑖𝐻𝐻
𝑚𝑚 ≤ 𝑡𝑡 <

(𝑖𝑖 + 1)𝐻𝐻
𝑚𝑚 ,

0, 𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒.
  

𝑖𝑖 = 0,1, … ,𝑚𝑚 − 1 is a positive integer 𝑚𝑚.  ℎ = 𝐻𝐻/𝑚𝑚 and 𝜑𝜑𝑖𝑖 are BPF. Assume 𝐻𝐻 = 1 and BPFs in [0,1) and ℎ =
1/𝑚𝑚. Figure 1 indicates the BPFs set of the interval [0,1). 

There are some properties for BPFs, the most important properties are disjointness, orthogonality, and 
completeness. Let us consider the first 𝑚𝑚 terms of BPFs and write them concisely as an m-vector 

 𝜙𝜙(𝑡𝑡) = [𝜑𝜑0(𝑡𝑡) 𝜑𝜑1(𝑡𝑡) ⋯ 𝜑𝜑𝑚𝑚−1(𝑡𝑡)]𝑇𝑇 , 𝑡𝑡 ∈ [0,1),  
where, superscript 𝑖𝑖 indicates transportation. The above representation and disjointness property follows 

 𝜙𝜙(𝑡𝑡)𝜙𝜙𝑡𝑡(𝑡𝑡)𝑉𝑉 = Ṽ𝜙𝜙(𝑡𝑡),  
where, 𝑉𝑉 is an 𝑚𝑚-vector and Ṽ = 𝑑𝑑𝑖𝑖𝑎𝑎𝑔𝑔(𝑖𝑖). Moreover, it can be clearly concluded that for any 𝑚𝑚 × 𝑚𝑚 matrix 𝐵𝐵 

 𝜙𝜙𝑡𝑡(𝑡𝑡)𝐵𝐵𝜙𝜙(𝑡𝑡) = Ḃ𝑇𝑇𝜙𝜙(𝑡𝑡)   
where, Ḃ is an 𝑚𝑚-vector with elements equal to the diagonal entries of matrix 𝐵𝐵. 

Also   

 � ф𝑡𝑡(𝑡𝑡)
1

0
𝑑𝑑𝑡𝑡 = [ ℎ ℎ ⋯ ℎ]𝑇𝑇 = ḣ,  

and 

 � ф(𝑡𝑡)ф𝑇𝑇(𝑡𝑡)𝑑𝑑𝑡𝑡 = ℎ𝐼𝐼,
1

0
  

where, 𝐼𝐼 is 𝑚𝑚 × 𝑚𝑚 identity matrix. 
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BPFs expansion 
For function 𝑓𝑓 in [0,1), 𝜑𝜑𝑖𝑖, and 𝑖𝑖 = 0,1, … ,𝑚𝑚− 1, we get: 

 𝑓𝑓(𝑡𝑡) ≃ � 𝑓𝑓𝑖𝑖𝜑𝜑𝑖𝑖(𝑡𝑡) = 𝐹𝐹𝑇𝑇ф(𝑡𝑡) = ф𝑇𝑇(𝑡𝑡)𝐹𝐹
𝑚𝑚−1

𝑖𝑖=1

,  

where, 𝐹𝐹 = [𝑓𝑓0 𝑓𝑓1 ⋯ 𝑓𝑓𝑚𝑚−1]𝑇𝑇 and 𝑓𝑓𝑖𝑖 ’s are defined by 

 𝑓𝑓𝑖𝑖 =
1
ℎ� 𝑓𝑓(𝑡𝑡)𝜑𝜑𝑖𝑖(𝑡𝑡)

1

0
𝑑𝑑𝑡𝑡.  

Nonlinear Integral Equation Solving Method 

With regard to approximations of nonlinear integral equation 𝑥𝑥(𝑡𝑡), we get 
 𝑥𝑥(𝑡𝑡) ≃ 𝐶𝐶𝑇𝑇𝑖𝑖(𝑡𝑡),  

Then we substitute this approximation following equations 

 𝐶𝐶𝑇𝑇𝑖𝑖(𝑠𝑠) = 𝑦𝑦(𝑠𝑠) + 𝜆𝜆1 � 𝑘𝑘1(𝑠𝑠, 𝑡𝑡)
𝑠𝑠

0
  

 𝑓𝑓�𝑡𝑡,𝐶𝐶𝑇𝑇𝑖𝑖(𝑡𝑡)�𝑑𝑑𝑡𝑡 + 𝜆𝜆2 � 𝑘𝑘2(𝑠𝑠, 𝑡𝑡)
1

0
  

 𝑔𝑔(𝑡𝑡,𝐶𝐶𝑇𝑇𝑖𝑖(𝑡𝑡))𝑑𝑑𝑡𝑡  
Using the Gaussian integral formula we get 

 𝜏𝜏1 = 2
𝑠𝑠𝑖𝑖
𝑡𝑡 − 1,   𝜏𝜏2 = 2𝑡𝑡 − 1.  

According to the Chebyshev polynomial in the local points, we get: 

 𝑠𝑠𝑖𝑖 = 𝑐𝑐𝑜𝑜𝑠𝑠 �𝑖𝑖𝜋𝜋
𝑁𝑁
�,   𝑖𝑖 = 0,1, … ,𝑁𝑁,  

 
Figure 1. A set of BPFs 

http://www.ijese.com/


 
 
Ghorbani 
 

 
208  http://www.ijese.com 
 
 
 

Assume that: 
 𝐻𝐻1(𝑠𝑠, 𝑡𝑡) = 𝐾𝐾1(𝑠𝑠, 𝑡𝑡)𝑓𝑓�𝑡𝑡,𝐶𝐶𝑇𝑇𝑖𝑖(𝑡𝑡)�,  
 𝐻𝐻2(𝑠𝑠, 𝑡𝑡) = 𝐾𝐾2(𝑠𝑠, 𝑡𝑡)𝑓𝑓�𝑡𝑡,𝐶𝐶𝑇𝑇𝑖𝑖(𝑡𝑡)�.  

Therefore, we get 

 𝑠𝑠𝑖𝑖 = 𝑐𝑐𝑜𝑜𝑠𝑠 �𝑖𝑖𝜋𝜋
𝑁𝑁
�,   𝑖𝑖 = 0,1, … ,𝑁𝑁,  

So, 

 𝐶𝐶𝑇𝑇𝑖𝑖(𝑠𝑠𝑖𝑖) = 𝑦𝑦(𝑠𝑠𝑖𝑖) + 𝜆𝜆1
𝑠𝑠𝑖𝑖
2 � 𝐻𝐻1 �𝑠𝑠𝑖𝑖 ,

𝑠𝑠𝑖𝑖(𝜏𝜏1 + 1)
2 �

1

−1
𝑑𝑑𝜏𝜏1 +

𝜆𝜆2
2 � 𝐻𝐻2 �𝑠𝑠𝑖𝑖 ,

(𝜏𝜏2 + 1)
2 �

1

−1
𝑑𝑑𝜏𝜏2.  

Now we can use Clenshaw-Curtis quadrature formula 

 𝐶𝐶𝑇𝑇𝑖𝑖(𝑠𝑠𝑖𝑖) = 𝑦𝑦(𝑠𝑠𝑖𝑖) + � ῎𝜔𝜔𝑘𝑘 �𝜆𝜆1
𝑠𝑠𝑖𝑖
2 � 𝐻𝐻1 �𝑠𝑠𝑖𝑖 ,

𝑠𝑠𝑖𝑖(𝑠𝑠𝑘𝑘 + 1)
2 � +

1

−1

𝜆𝜆2
2 𝐻𝐻2 �𝑠𝑠𝑖𝑖 ,

(𝑠𝑠𝑘𝑘 + 1)
2 ��

𝑁𝑁

𝐾𝐾=0

,  

for 𝑖𝑖 = 0,1,2, … ,𝑁𝑁, where 

 𝜔𝜔𝑘𝑘 =
4
𝑁𝑁 � ῎

1
1 − 𝑛𝑛2

𝑁𝑁

𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛 𝑛𝑛=0

cos �
𝑛𝑛𝑘𝑘𝜋𝜋
𝑁𝑁 �,  

DISCUSSIONS AND CONCLUSION 
The second Chebyshev wavelets operational matrix of integration and its product operational matrix have 

been obtained in general and used for solving the integral equations.  The present method reduces an integral 
equation into a set of algebraic equations. Some examples are included to demonstrate the superiority of our 
method. 
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